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Úloha AA . . . letní drink
Mějme válcovou skleničku s vnitřním poloměrem R = 3,0 cm a s kostkou ledu o délce strany a =
= 2,5 cm, která plave na hladině. Výška hladiny i s plovoucí kostkou je h = 10 cm. O kolik
centimetrů se výška hladiny ve skleničce změní, když kostka úplně roztaje? Pokud hladina
stoupne, uveďte kladné číslo, pokud klesne, tak záporné.

Vlado měl pocit, že mu přišla limonáda s víc ledem než vodou. Mýlil se.

Rozmery kocky sú výrazne menšie ako výška hladiny, kocka bude teda voľne plávať na hladine.
Plávajúca kocka sa preto nachádza v rovnovážnej polohe, teda výslednica síl na ňu pôsobiacich
je nulová. Podľa Archimedovho zákona platí

mg = ρvVpg ⇒ m = ρvVp ,

kde m je hmotnosť kocky ľadu a Vp je objem jej ponorenej časti. Vložením kocky do pohára
s vodou sa jej hladina zdvihla o

∆h0 = Vp

πR2 ,

z čoho vyplýva, že výška hladiny vody pred vložením kocky ľadu bola h0 = h− ∆h0.
Pri roztápaní kocky sa zachováva jej hmotnosť, kvôli čomu výška hladiny narastie o

∆h1 =
m
ρv

πR2 =
ρvVp

ρv

πR2 = Vp

πR2 = ∆h0 .

Výška hladiny po roztopení kocky bude

h1 = h0 + ∆h1 = h− ∆h0 + ∆h0 = h .

Výška hladiny sa teda zjavne nezmení (∆h = 0). Tento výsledok platí vo všeobecnosti pre
ľubovoľný tvar „kocky“ ľadu, keďže sme pri výpočte nevyužili žiadne špecifické geometrické
vlastnosti spojené s kockou.

Vladimír Slanina
vladimir.slanina@fykos.cz

Úloha AB . . . Markova jízda
Ulicí se řítí závratnou rychlostí vyhlídková tramvaj T3 Coupé vybavená turbomotory. Za páč-
kami nesedí nikdo jiný, než on. Muž. Mýtus. Legenda. Marek Milička. Každou sekundou se
blíží k rozpadlému mostu přes Vltavu. Řeka má šířku d = 200 m. Zbytky mostu jsou tvořeny
nájezdy na obou březích, které se zemí svírají úhel ϑ = 10◦. Marek zrychlí a. . . řeku s tramvají
přeskočí a úspěšně dopadne na nájezd na druhém břehu. Jakou rychlostí se Markova tramvaj
pohybovala těsně před skokem? I takové věci se dají zažít na FYKOSím soustředění.

Označme si rychlost, kterou se tramvaj na počátku pohybuje jako v. Protože se pohybuje po
nájezdu, svírá vektor rychlosti s horizontální rovinou také úhel ϑ. Pro horizontální (x-ovou)
a vertikální (y-ovou) složku rychlosti tak platí

vx = v cosϑ ,
vy = v sinϑ .
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Označme si čas, za který tramvaj řeku přeskočí jako t. Víme tak, že platí

vt cosϑ = d .

Navíc víme, že ve vertikálním směru bude první polovinu času tramvaj zpomalována tíhovým
zrychlením g až dosáhne nulové vertikální rychlosti, načež jím bude zase zrychlována až na
druhé straně dopadne se stejnou vertikální rychlostí, ale opačného směru. Platí tak

v sinϑ− g
t

2 = 0 .

Z této rovnice můžeme vyjádřit čas t a dosadit jej do předchozí rovnice

t = 2v
g

sinϑ ⇒ 2 sinϑ cosϑv
2

g
= d .

Následným využitím vztahu sin 2ϑ = 2 sinϑ cosϑ a úpravou pak pro rychlost v dostáváme

v =

√
gd

sin 2ϑ
.= 75,7 m·s−1 .= 272,7 km·h−1 .

Petr Sacher
petr.sacher@fykos.cz

Úloha AC . . . nesuď rybu podle běhání
Zajíc s rybou si chtějí dát spravedlivý závod, při kterém by zajíc běžel a ryba plavala. Vystartují
najednou a urazí vzdálenost s = 500 m po proudu řeky, potom se otočí a vrátí se zpátky na
začátek. To ale stále není úplně spravedlivé. Řeka má proud o rychlosti u = 1,0 m·s−1. Zajíc
běží stejnou rychlostí, jako plave ryba, a to v = 10 m·s−1. Jaký bude rozdíl v jejich časech?
Uveďte kladný výsledek, pokud první doběhne zajíc a záporný, pokud první doplave ryba.

Lego učil o pohybu v prostředí.

Zajacov čas bude jednoducho 2s/v = 100 s. Ryba bude mať v smere po prúde rýchlosť v + u,
a teda čas tejto polovice trasy s/(v + u) .= 45,45 s. Proti prúdu bude jej rýchlosť zase v − u,
a čas teda s/(v − u) .= 55,55 s. Spolu to bude teda rybe trvať približne 101,0 s, čiže dopláva
o 1,0 s neskôr ako zajac. Máme zadať kladný výsledok, ak prvý dobehne zajac, odpoveďou preto
bude 1,0 s.

Šimon Pajger
legolas@fykos.cz

Úloha AD . . . průměrování úhlů
Legovi se zdál nepříjemný sen: ocitl se uprostřed stáda běžících koní. Usoudil, že nejmenší riziko
zranění má, pokud poběží přibližně stejným směrem jako oni. Proto chtěl určit jejich průměrný
směr. Zvolil referenční vektor a změřil vůči němu směry několika okolních koní, čímž získal
úhly 1◦, 5◦, 2◦, 358◦, 357◦. Pod jakým úhlem vůči tomuto vektoru má Lego běžet, aby to byl
průměrný směr koní v jeho okolí? Lego si v rámci svého výzkumu četl o flockingu.
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Ak by sme spravili aritmetický priemer, dostaneme: (1◦ + 5◦ + 2◦ + 358◦ + 357◦)/5 = 144,6◦.
Tento výsledok avšak nedáva zmysel, keďže všetky kone bežia približne v smere nášho vektora
a nám ako priemer vyšiel smer 144,6◦. Je to samozrejme spôsoboné skokom v nule (kde je
zároveň uhol 360◦).

Tento problém môžeme vyriešiť tak, že tento skok odstránime a budeme brať uhly z inter-
valu (−180◦, 180◦). Potom dostaneme priemer (1◦ + 5◦ + 2◦ + (−2◦) + (−3◦))/5 = 0,6◦, čo už
je uveriteľná hodnota (a pre potreby tejto úlohy postačujúca).

Postup z predchádzajúceho odseku funguje iba v prípade, že smery sú naozaj takto blízko pri
sebe. Keby sme mali napríklad výrazne väčší súbor údajov pokrývajúci rôzne smery rovnomer-
nejšie, už by sme to nemohli takto jednoducho spriemerovať. V takýchto prípadoch sa používa
nasledovný postup: spočítame priemerný sínus a priemerný kosínus uhlov (tieto funkcie sú spo-
jité, nemajú žiadne skoky) a výsledný priemerný uhol dostaneme ako arkustangens ich pomeru.
V našom prípade to vyzerá nasledovne:

arctg
1
5 (sin 1◦ + sin 5◦ + sin 2◦ + sin 358◦ + sin 357◦)

1
5 (cos 1◦ + cos 5◦ + cos 2◦ + cos 358◦ + cos 357◦)

.= 0,6◦ .

Šimon Pajger
legolas@fykos.cz

Úloha AE . . . vive la révolution
Gilotina má čepel o hmotnosti m, která při pádu klouže ve žlábcích dvou svislých protilehlých
trámů. Koeficient tření mezi čepelí a trámy je k a normálová síla mezi každým trámem a čepelí
je F . Pod čepelí je umístěn meloun, k jehož rozseknutí je zapotřebí energie E. Určete minimální
výšku gilotiny při započítání ztrát energie třením.

Petr studoval historii Francie a sledoval demonstraci gilotiny.

Podľa zadania sa všetka energia vynaložená na brzdenie čepele trením premení na teplo. Celko-
vá potrebná počiatočná potenciálna energia sa bude preto rovnať súčtu požadovanej kinetickej
energie E a práce vykonanej trením. Túto prácu spočítame ako súčet trecích síl kF na oboch trá-
moch prenásobených nejakou výškou h, po ktorej budú sily pôsobiť. Celkovo dostávame 2kFh.
Poznamenajme, že normálová sila F pôsobí v každej z dvoch drážok na čepeľ z dvoch pro-
tiľahlých strán. Potom výsledným prefaktorom je iba 2, a nie 4, keďže trecia sila nezávisí na
veľkosti kontaktnej plochy. Teraz nám stačí si potrebnú potenciálnu energiu čepele mgh zapísať
do rovnice

mgh = E + 2kFh ,
(mg − 2kF )h = E ,

h = E

mg − 2kF .

Gilotína z tohto dôvodu musí byť vysoká aspoň h = E/(mg − 2kF ).

Jakub Kliment
jakub.kliment@fykos.cz
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Úloha AF . . . dip na nachos
Máme hromadu nachos a dipu. Nachos mají tvar rovnostranného trojúhelníku s délkou hra-
ny a = 5,2 cm. O kolik procent víc dipu spotřebujeme, když budeme namáčet nachos do dipu
tak, že je držíme za vrchol, oproti tomu, kdy je budeme držet za střed strany? V obou pří-
padech držíme nachos tak, abychom si neušpinili prsty, a necháme h = 0,62 cm nenamočenou.
Předpokládejte, že se nabírá konstantní tloušťka dipu. Tloušťku nachos zanedbejte.

Karel přemýšlel nad tím, co všechno nesmí jíst.
Porovnávame dva prípady – v prvom prípade držíme trojuholník (nachos) zvislo za jeho vrchol,
v druhom ho držíme za stred jeho strany. V oboch prípadoch budeme chcieť spočítať obsah
časti namočenej do dipu.

h

a

a

h

Obrázek 1: Geometria nachos po namočení do dipu v prvom (vľavo) a druhom (vpravo)
prípade.

Do dipu sa samozrejme namáča z oboch strán, avšak vo výsledku nás bude zaujímať iba
pomer daných obsahov, takže sa obmedzíme na jednu stranu trojuholníka. Pripomeňme si,
že výška rovnostranného trojuholníka so stranou a je a sin(60◦) = a

√
3/2, takže jeho obsah

bude a
√

3/2 · a/2 = a2√
3/4.

V prvom prípade bude do dipu namočený celý trojuholník (so stranou a) až na časť tvaru
menšieho rovnostranného trojuholníka s výškou h, teda so stranou 2h/

√
3. Obsah namočenej

časti bude preto

S1 =
√

3
4 a2 −

√
3

4

(
2h√

3

)2

=
√

3
4 a2 −

√
3

3 h2 .

V druhom prípade je do dipu namočená naopak iba časť tvaru rovnostranného trojuholníka,
tentokrát s výškou dĺžky a

√
3/2−h. Jeho strana bude mať preto dĺžku 2(a

√
3/2−h)/

√
3, potom

príslušný obsah bude

S2 =
√

3
4

2
(√

3
2 a− h

)
√

3

2

=
√

3
4 a2 − ah+

√
3

3 h2 .

Keďže nás zaujíma, o koľko percent viac dipu spotrebujeme v prvom prípade, budeme musieť
od pomeru S1/S2 odpočítať 100 %. Potom hľadaným výrazom bude pomer

S1 − S2

S2
=

ah− 2
√

3
3 h

2

√
3

4 a
2 − ah+

√
3

3 h
2

= 4h√
3a− 2h

.= 32 % .

Jakub Kliment
jakub.kliment@fykos.cz
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Úloha AG . . . aktivní elektrárna
Jaderná elektrárna Temelín má tepelný výkon P = 6,2 GW. Uvažujme, že průměrná využitelná
energie uvolněná při rozpadu jednoho jádra uranu 235U je E0 = 200 MeV a veškerý výkon je
z tohoto rozpadu. Molární hmotnost izotopu 235U je MU235 = 235 g·mol−1 a poločas rozpadu
je T = 7,04 · 108 let. Jeden banán má aktivitu A = 15 Bq. Kolikrát větší je aktivita 235U
spotřebovaného za t = 1,0 s v jaderné elektrárně Temelín oproti banánu?

Tuto úlohu Vám přináší Skupina ČEZ. David chtěl být aktivní, ale nechtělo se mu cvičit.
Nejprve si spočteme, kolik se v Jaderné elektrárně Temelín rozpadne jader uranu 235U. Za jednu
sekundu bude počet rozpadů

N = Pt

E0
≈ 2,1 · 1020 .

Dáme si pozor na jednotky a uvědomíme si, že E0 = 200 MeV = 3,20 · 10−11 J. Pro aktivitu
platí vzorec

A = λN ,

kde λ je rozpadová konstanta, pro kterou zase platí

λ = ln 2
T

,

kde T je poločas rozpadu.
Kombinací těchto vzorců a faktu, že nás zajímá poměr aktivit Jaderné elektrárny TemelínAU

a banánu A, dostáváme výsledné řešení jako

AU

A
=

ln 2
T

P t
E0

A
= Pt ln 2
AE0T

= 6,2 · 109 W · 1 s · ln 2
15 Bq · 3,20 · 10−11 J · 2,22 · 1016 s

.= 402 .

Aktivita uranu spotřebovaného v Jaderné elektrárně Temelín je asi 402-krát větší, než je aktivita
banánu.

David Škrob
david.skrob@fykos.cz

Úloha AH . . . voda ve vzduchu
Hasič hasí požár, přičemž z vyvýšeného místa nepřetržitě kropí okolí souvislým proudem vody
z hadice. Hadici drží tak, že ústí je ve výšce h0 = 3,2 m nad povrchem země, na který voda
následně dopadá. Voda vytéká z hadice o průměru d = 75 mm rychlostí v0 = 4,2 m·s−1 pod
počátečním úhlem α = 35◦ vzhůru vzhledem k horizontální rovině. Jakou hmotnost má voda,
která se v každém okamžiku nachází ve vzduchu?

Karel přemýšlel nad hasiči a imatrikulační vodní slavobránou.
Na to, aby sme určili, aký objem vody sa bude nachádzať v každom momente vo vzduchu,
potrebujeme najprv spočítať čas, ako dlho sa bude každý vodný element vo vzduchu nachádzať.
Jeho počiatočná výška nad zemou je h0 a jeho počiatočná rýchlosť vo vertikálnom smere je v0y =
= v0 sinα, takže jeho okamžitá výška nad zemou bude h(t) = h0 +v0yt−gt2/2. V momente, keď
vodný element dopadne na zem, sa táto výška musí rovnať nule, preto stačí vyriešiť vzniknutú
rovnicu s nulovou pravou stranou pre čas t

h0 + v0yt− 1
2gt

2 = 0 ⇒ t =
v0y +

√
v2

0y + 2gh0

g

.= 1,09 s ,
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kde sme zvolili znamienko +, pretože nás zaujíma kladná hodnota času t (čas v budúcnosti).
Teraz keď poznáme čas t, stačí spočítať, koľko vody sa stihne za tento čas dostať do vzduchu,
teda vystrieknúť von z hadice. Tá má prietokovú rýchlosť v0 a plochu prierezu S = πd2/4, takže
za dobu t ňou pretečie objem V = Sv0t. Tento objem je potrebné prenásobiť hustotou vody ρ
a dostaneme hľadanú hmotnosť vody nachádzajúcej sa vo vzduchu

M = ρV = ρSv0t = πd
2ρv0

4
v0 sinα+

√
v2

0 sin2 α+ 2gh0

g

.= 20 kg .

Jakub Kliment
jakub.kliment@fykos.cz

Úloha BA . . . valentýnský kazivec

a

Ca2+

F−

Jak tak Vlado před Valentýnem hledal nějaký romantický dá-
rek pro svou přítelkyni Julku, zavítal do obchodu s různými
ozdobnými minerály. Zaujaly ho výrobky z kazivce, a tak se
začal více zamýšlet nad jejich mystickými vlastnostmi. Vypočí-
tejte, jaká je hustota monokrystalu kazivce a výsledek uveďte
na čtyři platné číslice. Jedna buňka kazivce (CaF2) má roz-
měr a = 5,463 Å. Jeho krystalovou mřížku naleznete na při-
loženém obrázku. Molární hmotnosti vápníku a fluoru jsou po
řadě MCa = 0,040 08 kg·mol−1 a MF = 0,019 00 kg·mol−1.

Tento rok to bude znovu kytice.

Monokrystal kazivce je tvořený opakováním velkého množství elementárních mřížek. Spočítáním
„kuliček na obrázku“ zjistíme, že elementární mřížku tvoří 8 atomů fluoru a 14 atomů vápníku;
musíme si ale uvědomit, že každý z atomů vápníku, který se nachází ve středu stěny je sdílený
dvěma buňkami a že každý z atomů vápníku, který se nachází ve vrcholu, je sdílený mezi osmi
buňkami. Dohromady tedy dostaneme, že v celém krystalu na jednu buňku v průměru připadne
8 atomů fluoru a 1 + 4/2 + 8/8 = 4 atomy vápníku – toto také odpovídá faktu, že sumární
vzorec kazivce je CaF2.

Pro výpočet hustoty nyní stačí určit poměr hmotnosti těchto 12 atomů ku objemu elemen-
tární mřížky, tedy

ρ = m

V
= 8mF + 4mCa

a3 = 8MF + 4MCa

NAa3 ,

kde NA = 6,022 · 1023 mol−1 značí Avogadrovu konstantu a MCa = 0,040 08 kg·mol−1 a MF =
= 0,019 00 kg·mol−1 značí molární hmotnosti jednotlivých prvků. Převedením a = 5,463 Å =
= 5,463 · 10−10 m a dosazením dojdeme k výsledku

ρ
.= 3 181 kg·m−3 ,

který odpovídá tabulkové hodnotě.

Vojtěch David
vojtech.david@fykos.cz
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Úloha BB . . . drknutí do sklenice
Máme válcovou sklenici s výškou h a průměrem podstavy d. Předpokládejme, že její těžiště je
ve středu její osy. Jaký minimální koeficient statického tření s podložkou je potřeba, aby bylo
možné sklenici převrhnout pouze tlačením z boku? Tlačit lze do libovolného místa, ale pouze
vodorovně. Lego rozbil skleničku.

Moment sily, ktorý musíme prekonať, je moment, ktorým by tiaž pôsobila voči bodu dotyku
s podložkou pri limitnom naklonení pohára. Tiaž pôsobí v strede pohára, takže rameno sily
bude mať voči bodu dotyku vodorovnú vzdialenosť d/2. Veľkosť tohto momentu by bola M1 =
= mgd/2, kde sme si označili hmotnosť pohára ako m.

Ak by sme do pohára drgli silou väčšou než je maximálna sila statického trenia, začal by
sa po podložke kĺzať, čím by koeficient trenia klesol na hodnotu koeficientu dynamického trenia.
Najväčšia šanca pohár prevrhnúť bude práve vtedy, keď zatlačíme presne silou statického trenia,
čiže fmg.

Zároveň záleží na tom, v ktorom mieste pohára doň drgneme. Ak by sme do pohára zatlačili
pri jeho podstave, asi je intuitívne, že ho zrejme neprevrhneme. Najväčší moment sily vyvoláme,
keď budeme tlačiť v jeho najvyššom bode, čiže h od podstavy. Vtedy sila nášho tlačenia a trecia
sila budú spolu pôsobiť na pohár momentom sily M2 = mgfh. Dostávame rovnicu

M1 = M2 ,

mg
d

2 = mgfh ,

d

2h = f .

Toto je teda minimálne f potrebné na to, aby sme pohár začali nakláňať. Ale keď ho už
nakloníme, zvislá vzdialenosť bodu, v ktorom tlačíme voči osi otáčania narastie, a zároveň
vodorovná vzdialenosť ťažiska od osi otáčania klesne. Z toho vyplýva, že hodnota f , ktorá by
stačila na počiatočné naklonenie, bude určite stačiť aj na úplné prevrhnutie pohára.

Šimon Pajger
legolas@fykos.cz

Úloha BC . . . mince na vodě
Na vodě leží mince z kovu o hustotě ρ = 2 580 kg·m−3, poloměru r = 8,10 mm a výšce h =
= 0,651 mm. Díky povrchovému napětí se mince nepotopí. Na jakou minimální teplotu je
potřeba ohřát vodu, aby se potopila? Povrchové napětí vody je při teplotě 50,0 ◦C σ50 =
= 67,92 mN·m−1 a při teplotě 60,0 ◦C σ60 = 66,18 mN·m−1. Předpokládejte, že závislost povr-
chového napětí na teplotě je lineární.

Danka by si chtěla zkusit lehnout si na vodu a nezmoknout.

Výsledná sila spôsobená povrchovým napätím vody pôsobiaca na mincu bude F = −σl cos θ,
kde l = 2πr je dĺžka, na ktorej je minca v kontakte s povrchom vody, a θ je kontaktný (zmáčavý)
uhol hladiny vody voči hrane mince. Na to, aby minca plávala na hladine, musí sila povrchového
napätia vykompenzovať tiaž mince, takže musí platiť

−2πσr cos θ = mg ,
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kde m = πr2hρ. Je zjavné, že limitným prípadom s minimálnym postačujúcim povrchovým
napätím bude situácia s θ = 180◦. Z toho dostávame hodnotu povrchového napätia

σ = mg

2πr = rhρg

2 .

Zostáva nám dopočítať teplotu, pri ktorej voda nadobudne takúto hodnotu povrchového
napätia. Ak si označíme t50 = 50,0 ◦C a t60 = 60,0 ◦C, lineárnu závislosť popísanú hodnotami
σ50 a σ60 vieme zapísať ako σ(t) = σ50 + (σ60 − σ50)(t − t50)/(t60 − t50). Z nej stačí vyjadriť
teplotu t, čím postupne dostávame

σ50 + (σ60 − σ50) t− t50

t60 − t50
= rhρg

2 ,

t− t50

t60 − t50
=

rhρg
2 − σ50

σ60 − σ50
,

t = t50 +
rhρg

2 − σ50

σ60 − σ50
(t60 − t50) .= 56,8 ◦C .

Jakub Kliment
jakub.kliment@fykos.cz

Úloha BD . . . prokrastinační
Na Marka se sápe povinnost, tak ji chytí, přiváže ji na provaz dlouhý l = 3,0 m, zatočí s ní tak, že
provaz svírá s vodorovnou rovinou úhel α = 15◦, a z provazu ji vypustí. Protože je ale povinnost
dotěrná, jen co dopadne, rozběhne se z klidu za Markem se zrychlením a = 1,5 m·s−2, zatímco
on od vypuštění utíkal od bodu, kam měla povinnost odpadnout, rychlostí v = 15 km·h−1.
Pokud je Marek vysoký h = 2,0 m a v této výšce drží provaz, za jak dlouho po dopadu ho
povinnost dostihne? Marek je muž soustředění, závazků a čiré vůle.

Úloha je ďábelskou sérií malých výpočtů, které na sebe navazují.
Rozeberme nejdříve situaci, kdy Marek s povinností točil. Z rovnováhy sil zjistíme, že odstře-

divá síla působící na povinnost byla Fo = mg cotgα = mv2
t /r, kde m je hmotnost povinnosti,

g je tíhové zrychlení, vt je tečná rychlost povinnosti a r je poloměr otáčení, pro který platí r =
= l cosα. Dostaneme tak počáteční rychlost následujícího vodorovného vrhu

vt =
√
gl cosα cotgα .= 10,3 m·s−1 .

Jeho počáteční výška byla h′ = h − l sinα a vrh trval čas t =
√

2h′/g
.= 0,50 s. Za tu dobu

povinnost uletěla vzdálenost D = vtt
.= 5,14 m, ale protože neletěla přímo od Marka, při

náhledu shora uvidíme pravoúhlý trojúhelník s odvěsnami r a D, hledaná vzdálenost dopadu
povinnosti od Marka je pak

d =
√
D2 + r2 .= 5,90 m .

Ve chvíli, kdy Marek povinnost vypustil, vyběhl, a tedy když se za ním rozběhne, má Marek
náskok

x0 = vt+ d
.= 7,98 m .
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Pro čas T , za který Marka doběhne, platí

1
2aT

2 = x0 + vT ,

T = v +
√
v2 + 2a x0

a
,

kde jsme vzali fyzikální kladný kořen.
Dosazením postupně do vzorců dostaneme T = 7,1 s.

Marek Milička
marek.milicka@fykos.cz

Úloha BE . . . záchrana Schrödingerovy kočky
Anička má v krabici zavřenou Schrödingerovu kočku, jež má zpočátku pravděpodobnost přeži-
tí p0 = 50 %. O kočku se bojí, a tak uzavře dohodu s kouzelnou vílou – ta třikrát sešle oživovací
kouzlo, které pokaždé zasáhne krabici v náhodném místě. Krabice má v půdorysu tvar obdélní-
ku o rozměrech a = 90 cm a b = 75 cm. Kočku, která se během sesílání kouzel nepohne, lze při
pohledu shora modelovat jako kruh o poloměru r = 15 cm umístěný náhodně v krabici. Pokud
je kočka zasažena, je okamžitě zachráněna. Jaká je pravděpodobnost, že je kočka po třetím
seslání kouzla naživu? Anička se bojí koček.

Je výhodnější spočítat si pravděpodobnost pn případů, ve kterých kočka zasažena nebude – tím
se totiž vyhneme řešení situací, v nichž je kočka zasažena vícekrát. Pravděpodobnost, že kočka
zasažena byla, je pak pz = 1 − pn.

Pravděpodobnost zasažení kočky záchranným kouzlem odpovídá dopadu kouzla do plochy
velikosti průřezu kočky oproti celkové ploše, kterou může zasáhnout. Máme tedy

pz = πr
2

ab
.

Pravděpodobnost, že jedno kouzlo kočku nezasáhne, je pak

pn = 1 − πr
2

ab
.

Aby kočka zemřela, nesmí být zasažena ani jednou a musí být mrtvá již na začátku. Platí
pak

pθ = p0

(
1 − πr

2

ab

)3

,

a pravděpodobnost přežití kočky pak vyčíslíme jako

p¬θ = 1 − p0

(
1 − πr

2

ab

)3
.= 64 % .

Petr Sacher
petr.sacher@fykos.cz
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Úloha BF . . . kulička ve válci
Máme plnou homogenní kuličku s poloměrem r a hmotností m, která se kutálí uvnitř válcové
dutiny s vnitřním poloměrem R = 3r. Dutina leží tak, že její hlavní osa je rovnoběžná s vo-
dorovnou rovinou, a tíhové zrychlení g působí ve svislém směru. Po dobu pár otoček můžeme
zanedbat energetické ztráty a kulička neprokluzuje. Poměr rychlostí kuličky v nejnižším místě
pohybu v1 a nejvyšším místě v2 je v1 = 7v2/4 = 1,75v2. Jaké maximální rychlosti vmax dosahuje
kulička v průběhu pohybu? Jako výsledek odevzdejte vzorec vyjádřený v závislosti pouze na
parametrech m, g a r. Karel chtěl dát úlohu s obrázkem a pak byl líný ho kreslit.

Kulička ve válci koná translační i rotační pohyb, který je svázaný díky tomu, že neprokluzuje.
To můžeme zachytit vztahem mezi její rychlostí v, poloměrem r a úhlovou rychlostí ω

v = rω .

Celková kinetická energie kuličky je součtem translační a rotační energie

Ei = 1
2mv

2
i + 1

2Jω
2
i ,

kde index i jsme zavedli pro situace 1 odpovídající nejnižšímu místu pohybu a 2 nejvyššímu
místu. J je pak moment setrvačnosti, který je pro plnou homogenní kuličku

J = 2
5mr

2 .

Vztah pro kinetickou energii můžeme upravit na

Ei = 7
10mv

2
i .

Maximální rychlost bude mít kulička v nejnižším bodě svojí dráhy (v1), přičemž rozdíl
kinetické energie v nejvyšším a nejnižším bodě je dán rozdílem potenciálních energií ∆Ep =
= mg(h2 − h1). Nejspodnější poloha těžiště kuličky je ve výšce h1 = r nad spodkem válce
a nejvyšší poloha pak ve výšce h2 = 2R − r = 6r − r = 5r. Po dosazení do zákona zachování
energie a pár úpravách se postupně dostáváme k výsledku

7
10mv

2
1 = 7

10mv
2
2 +mg (h2 − h1) ,

v2
1 − v2

2 = 10
7 g (5r − r) ,

v2
1 − 42

72 v
2
1 = 10

7 g · 4r ,

v1 =
√

280
33 gr ≈ 2,91 √

gr ≈
√

r

m · 9,12 m·s−1 .

Maximální rychlost v průběhu pohybu je vmax = v1 =
√

280gr/33 a tedy nezávisí na m.
Zbývá ověřit, že úloha není chyták, míček skutečně vykoná celou rotaci a nespadne při tom.

Spadl by, kdyby tíhová síla byla větší než dostředivá síla potřebná k jeho zatáčení. Srovnáme
dostředivé zrychlení

ado = v2
2

2r = 320
231g > g ,

11
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přičemž poloměr rotace jsme dosazovali R−r = 2r, protože právě po takovém poloměru kulička
obíhá. Zjišťujeme, že gravitační síla není dost silná, aby míček strhla dolů v nejvyšším bodě
trajektorie, tím pádem ani ve zbývajících bodech trajektorie.

Závěrem bychom mohli poznamenat, že se nám málem podařilo zadat konstanty tak, že by
to nebylo možné a kulička by v průběhu spadla. Úlohu jsme ale nechtěli zadat jako chyták.

Karel Kolář
karel@fykos.cz

Úloha BG . . . míč v ruce
Chceme chytit velký míč jednou rukou a držet ho pod ní. Situaci proto modelujme následovně.
Máme N = 5 prstů, můžeme tedy působit v N bodech. Tření mezi prstem a míčem je f =
= 0,53. Prsty jsou rozmístěny symetricky kolem pólu míče, který míří směrem nahoru v našem
tíhovém poli. Jaký nejmenší zenitový úhel musíme zvolit (tedy jak nejblíže pólu), abychom míč
ještě udrželi? Hmotnost míče je 550 g a normálová síla, kterou jeden prst může na míč působit,
je 5,6 N. Jarda nikdy nechápal, jak někdo může takto udržet basketbalový míč.

Abychom mohli míč v klidu držet v ruce, potřebujeme, aby výslednice sil na něj působících byla
nulová. Směrem dolů na něj působí tíhová síla mg, kterou musí kompenzovat třecí síla. Ta má
pro každý prst velikost fF , kde F je síla, kterou prst působí kolmo na povrch míče.

Nechť tato síla svírá se svislou rovinou úhel α. Tak třecí síla svírá s vodorovnou rovinou
také úhel α a působí proti směru případného pohybu míče, tedy směrem k pólu míče (nejvýše
položenému bodu). Vodorovná složka třecí síly je Ff cosα a svislá, působící nahoru, je Ff sinα.

Nyní je důležité si uvědomit, že ve vodorovném směru se složky třecí Ff i tlakové síly F
navzájem vyruší, protože jsme prsty rozložili rovnoměrně symetricky kolem svislé osy prochá-
zející pólem míče. Ve svislém směru působí zmíněná tíhová síla, třecí síla a také svislá složka
tlakové síly F cosα, která působí směrem dolů. Aby byla výslednice nulová, musí platit

mg +NF cosα = NFf sinα .

Vyjádříme sinα pomocí kosinu jako
√

1 − cos2 α, dosadíme a upravíme

mg +NF cosα = NFf
√

1 − cos2 α ,

m2g2 + 2mgNF cosα+N2F 2 cos2 α = N2F 2f2 −N2F 2f2 cos2 α ,

m2g2 −N2F 2f2 + 2mgNF cosα+N2F 2 (f2 + 1
)

cos2 α = 0 ,

odkud řešením kvadratické rovnice (bereme to kladné, aby platilo α < 90◦) dostáváme

cosα = 1
2N2F 2 (f2 + 1)

(
−2mgNF +

√
4m2g2N2F 2 − 4 (m2g2 −N2F 2f2)N2F 2 (f2 + 1)

)
,

cosα = 1
NF (f2 + 1)

(
−mg + f

√
N2F 2 (f2 + 1) −m2g2

)
,

cosα = f

√
1

f2 + 1 − m2g2

N2F 2 (f2 + 1)2 − mg

NF (f2 + 1) ,

α
.= 72◦ .
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Kdyby byl úhel větší, tak by pravá strana první rovnice byla větší než levá a míč bychom
jednoduše udrželi. V opačném případě bychom míč neudrželi. Díky rovnosti jsme tak našli
hledanou limitní hodnotu.

Jaroslav Herman
jardah@fykos.cz

Úloha BH . . . šrouby a matice
David se jednou vzbudil se zvláštním snem: chtěl do matky s vnitřním průměrem d1 = 12,0 mm
dát šroub s vnějším průměrem d2 = 18,0 mm, obě hodnoty naměřené při pokojové teplo-
tě tpokoj = 20,0 ◦C. Na pomoc si v krámku koupil karafu kapalného dusíku, jehož teplota při
použití byla TN2

= 77,0 K, do které šroub dal. Určete, na jakou termodynamickou teplotu musí
zahřát matku, aby se do sebe daly zašroubovat. Roztahování a zmenšování drážek zanedbejte.
Tepelná roztažnost obou objektů je α = 345 · 10−6 K−1. Uvažujeme, že koeficient α je vůči
teplotě indiferentní. David povídal Matyášovi o jeho životním snu.

Potřebujeme, aby tepelně roztažený průměr matky byl stejně velký jako tepelně snížený průměr
šroubu. Vzorec pro tepelnou roztažnost je

lT = l0(1 + α∆t) .

Jelikož se naše rozměry musí rovnat, víme, že

d1(1 + α(Tmatka − Tpokoj)) = d2(1 + α(TN2
− Tpokoj)) ,

kde po úpravách dostáváme

Tmatka − Tpokoj =
d2(1 + α(TN2

− Tpokoj))
d1α

− 1
α

a vyjádříme Tmatka

Tmatka =
d2(1 + α(TN2

− Tpokoj)) − d1

d1α
+ Tpokoj

.= 1 420 K .

Matyáš Beran
matyas.beran@fykos.cz

Úloha CA . . . lusknutím prstů
Ve filmu Avengers: Infinity War záporák Thanos lusknutím prstů obrátí polovinu živých bytostí
ve vesmíru v prach. Představme si, že to fyzikálně dokáže tak, že těmto organismům ve vesmíru
učiní všechny atomy v jejich tělech nestabilními s velmi krátkým poločasem života. Jestliže se
za T = 5 s od lusknutí zasažené bytosti rozpadnou z p = 99 %, jaký byl jejich poločas rozpadu?

Druhá polovina vesmíru zemřela na rakovinu z doprovázejícího ozáření.

Využijeme znalost rozpadového zákona,

N(t) = N0e
−λt ,
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který udává počet nerozpadlých částic N v čase t, pokud N0 je počáteční počet částic. λ je
rozpadová konstanta, která s poločasem rozpadu T1/2 souvisí vztahem

λ = ln 2
T1/2

.

V zadaném čase T počet rozpadlých částic splňuje podmínku

p = N0 −N(T )
N0

= 1 − e
− ln 2

T1/2
T
.

Teď už nám jen stačí vyjádřit T1/2

T1/2 = ln 2
ln 1

1−p

T
.= 0,75 s .

Petr Sacher
petr.sacher@fykos.cz

Úloha CB . . . jak šlo kolo na vandr
Paťo jel autem po dlouhé rovné prázdné cestě do kopce s konstantním úhlem sklonu α = 3,8◦.
Vtom uslyšel divný zvuk, pohlédl do zrcátka a srdce mu spadlo do kalhot: zadní kolo jeho auta
se kutálelo za vozidlem! Auto ale pokračovalo dál, jakoby se vůbec nic nestalo, a tak začal
přemýšlet, co s kolem. Zastavovat ho by bylo nebezpečné, a tak se na něj rozhodl počkat na
místě, kde se zastaví. V jaké vzdálenosti od místa odpojení se kolo zastaví?

Kolo považujte za tuhý homogenní válec s hmotností m = 21 kg a poloměrem r = 32 cm.
Bezprostředně po odpojení mělo kolo obvodovou rychlost v = 90 km·h−1 a až do zastavení se
bez prokluzování kutálelo po přímočaré trajektorii auta. Kolo je zároveň proti směru pohybu
zpomalováno odporovou silou o velikosti kFN působící v těžišti, kde k = 2,4 · 10−2 je koeficient
úměrnosti a FN normálová síla, kterou cesta působí na kolo. Deformaci kola neuvažujte.

Paťovi se řízení zdá nebezpečné.

Riešenie pomocou práce a energie
Koleso sa po odpojení pohybovalo nenulovou rýchlosťou v, z toho dôvodu spočítame jeho poči-
atočnú kinetickú energiu Ek. Tá je daná súčtom translačnej kinetickej energie

Ek,t = 1
2mv

2

reprezentujúcej posuvný pohyb ťažiska kolesa; a rotačnej kinetickej energie Ek,r popisujúcej
jeho otáčavý pohyb, pre ktorú platí

Ek,r = 1
2Iω

2 = 1
2

(1
2mr

2
)
v2

r2 = 1
4mv

2 .

V predošlom vzťahu I = mr2/2 predstavuje moment zotrvačnosti plného homogénneho valca
voči jeho osi a ω predstavuje uhlová rýchlosť kolesa, pre ktorú z podmienky neprešmykovania
platí v = ωr.
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Bez ujmy na všeobecnosti môžeme zvoliť nulovú hladinu potenciálnej energie (gravitačného
poľa) v mieste odpadnutia kolesa. Na koleso ešte pôsobí odporová sila, avšak v momente od-
padnutia nestihla vykonať žiadnu prácu, nakoľko koleso zatiaľ neprešlo žiadnu dráhu. Celková
počiatočná energia E1 kolesa bezprostredne po odpojení je potom

E1 = Ek = Ek,t + Ek,r = 3
4mv

2 .

Pozrime sa teraz na konečný stav kolesa, kedy zastaví. Jeho kinetická energia bude nutne
nulová, pohybom do kopca však vzrastie potenciálna energia. S ohľadom na zvolenú nulovú
hladinu v mieste odpojenia bude konečná potenciálna energia Ep daná ako

Ep = mg∆h = mgs sinα ,

kde g = 9,81 m·s−2 je štandardné tiažové zrýchlenie a ∆h výškový rozdiel. Tento rozdiel sme
určili z geometrie situácie pomocou uhla sklonu cesty α a veľkosti prejdenej dráhy s, ktorú
hľadáme. Zároveň sa na brzdení podieľa aj odporová sila kFN, pričom pre normálovú silu pla-
tí FN = mg cosα. Odpor je počas celého deja konštantný a práca W odporovej sily na dráhe s
je potom

W = kFNs = kmgs cosα .

Zo zákona zachovania energie plynie, že celá počiatočná energia E1 sa musí premeniť na
nárast potenciálnej energie Ep a na teplo dané prácou W odporovej sily

E1 = Ep +W ,

3
4mv

2 = mgs sinα+ kmgs cosα .

Odtiaľ už len vyjadríme a dosadením hodnôt vyčíslime dráhu s, na ktorej koleso zastaví

s = 3v2

4g (sinα+ k cosα)
.= 0,53 km . (1)

Riešenie pomocou síl
Alternatívne možno úlohu vyriešiť zostavením silovej a momentovej pohybovej rovnice. Vý-
slednica vonkajších síl bude spomaľovať posuvný pohyb hmotného stredu, ale súčasne aj ich
momenty začnú spomaľovať otáčanie celého kolesa; pričom tieto dva deje sú spolu pevne prepo-
jené podmienkou neprešmykovania (v tomto prípade a = εr pre zrýchlenie a posuvného pohybu
ťažiska a uhlové zrýchlenie ε celého kolesa), ktorú zabezpečuje statická trecia sila Ft.

Pohybový účinok na koleso má okrem trenia Ft aj zložka tiažovej sily mg sinα smerujúca
proti pohybu kolesa a tiež odporová sila kFN = kmg cosα rovnakého smeru. Pri valení dopredu
má koleso tendenciu prešmykovať na podložke dozadu, trecia sila Ft potom pôsobí v smere
pohybu, presne opačne ako ostatné sily. Ak zvolíme aktuálny smer kotúľania kolesa za kladný,
silová rovnica posuvného pohybu má tvar

ma = −mg sinα− kmg cosα+ Ft . (2)

Podobne môžeme pre rotáciu kolesa okolo svojej osi zostaviť momentovú rovnicu. Tiažová
i odporová sila pôsobia v ťažisku ležiacom na osi, preto bude ich moment nulový. Trecia sila Ft
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pôsobí v rovine vozovky v bode dotyku s kolesom, jej moment vzhľadom na os kolesa je vďaka
kolmosti dotyčnice na polomer kružnice (resp. valca) rovný Ftr. Získavame momentovú rovnicu

Iε = −Ftr .

Záporné znamienko momentu trecej sily plynie z toho, že aj keď má trecia sila smer pohybu
kolesa, roztáča ho presne opačným (záporným) smerom. Po dosadení I = mr2/2 a a = εr
vyjadríme treciu silu Ft ako

Ft = −1
2ma .

Dosadením do pohybovej rovnice (2) dostávame zrýchlenie

a = −2
3g (sinα+ k cosα) .

Nakoľko je zrýchlenie konštantné, možno uplatniť štandardné kinematické rovnice pre rov-
nomerne zrýchlený pohyb. Pre rýchlosť u(t) kolesa v čase (v kladnom smere) platí

u(t) = at+ v = −2
3gt (sinα+ k cosα) + v .

V čase zastavenia tz je rýchlosť nulová (u(tz) = 0), z rovnice ho možno vyjadriť ako

tz = 3v
2g (sinα+ k cosα) .

Hľadaná dráha s, ktorú koleso prejde rovnomerne spomaleným pohybom za dobu tz, je potom

s = 1
2at

2
z + vtz = 1

2

(
−2

3g (sinα+ k cosα)
)( 9v2

4g2 (sinα+ k cosα)2

)
+ 3v2

2g (sinα+ k cosα) =

= − 3v2

4g (sinα+ k cosα) + 3v2

2g (sinα+ k cosα) = 3v2

4g (sinα+ k cosα)
.= 0,53 km ,

čo odpovedá výsledku (1).

Patrik Stercz
patrik.stercz@fykos.cz

Úloha CC . . . Wienův filtr
Takzvaný Wienův filtr je zařízení, které se používá, abychom z proudu nabitých částic vybrali
jen ty, které mají specifickou rychlost. Zařízení sestává ze dvou rovnoběžných destiček, mezi
kterými je homogenní elektrické pole o velikosti E a na něj kolmé homogenní magnetické pole
o velikosti B. Proud částic mezi destičky nalétává tak, že je jejich rychlost kolmá na obě pole.
Máme-li zadané pole E a B, částice s jakou velikostí rychlosti ve filtru nezmění směr svého
pohybu? Petr seděl na přednášce z jaderné fyziky.

Budeme potřebovat vztahy pro elektrickou a magnetickou sílu

FE = qE ,

FB = q (v × B) .
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Ve Wienově filtru jsou směry elektrického a magnetického pole zvoleny tak, že na prolétávající
částici působí síly přesně v opačném směru. Úlohu tak můžeme řešit jednorozměrně; protože
rychlost prolétávající částice a B jsou navzájem kolmé, vektorové násobení se nám převede na
jednoduché. Aby částice filtrem proletěla, nesmí být její pohyb jakkoliv zakřiven, tedy

FE − FB = 0 ,
qE − qvB = 0 .

To nám na rychlost částic dává jednoduchou podmínku

v = E

B
.

Petr Sacher
petr.sacher@fykos.cz

Úloha CD . . . rotující umyvadlo
Představte si umyvadlo tvaru dutého válce o poloměru r. Z jednoho místa na okraji jeho dna
tryská voda tak, že dopadá přímo do středu dna umyvadla a v nejvyšším bodě je ve výšce h nad
povrchem. Na jakou největší úhlovou rychlost můžeme umyvadlo i s tryskou roztočit kolem osy
válce, aby voda nedopadala na plášť válce? Tým FYKOS byl na návštěvě v CosmoCaixa.

Dokud se umyvadlo netočí, tak platí

r = v0t cosα ,

kde r je poloměr umyvadla, v0 je počáteční rychlost vody (vzhledem k umyvadlu a nyní i vzhle-
dem k zemi) a cosα počáteční směr vůči zemi. Čas t, po který jsou kapky ve vzduchu, můžeme
vyjádřit z vertikální rychlosti

0 = v0 sinα− g
t

2 ,

t = 2v0 sinα
g

,

která je zase spojena s dosaženou výškou h skrze zákon zachování energie jako

1
2m (v0 sinα)2 = mgh ,

v2
0 sin2 α = 2gh .

Ze zadaných parametrů tedy dokážeme vyjádřit

t =
√

8h
g
.

Když umyvadlo roztočíme úhlovou rychlostí ω, tak vzhledem k zemi se kapkám přidá ještě
další vodorovná složka rychlosti, která má směr tečně k pohybu a velikost v⊥ = ωr.
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Víme, že voda ve směru normálovém urazí vzdálenost r. Aby však nedopadla na střed kruhu,
ale na jeho okraj, musí i v tečném směru urazit vzdálenost r (to je v tomto směru vzdálenost
středu a okraje). Musí tak platit

v⊥t = r = ωrt ⇒ ω = 1
t

=
√

g

8h .

Hledaná úhlová rychlost tak je
ω =

√
g

8h .

Kdybychom umyvadlo roztočili rychleji, tak by voda dopadala na plášť válce v nenulové výšce.

Jaroslav Herman
jardah@fykos.cz

Úloha CE . . . Titanic
Titanic pluje rychlostí v = 45,0 km·h−1 směrem k ledovci, když vtom kapitán lodi spustí lodní
sirénu, která vydává zvuk s frekvencí f = 440 Hz. Poté, co siréna umlkne, se zvuk od ledovce
odrazí zpátky. Jakou frekvenci f ′ kapitán uslyší?

Kdyby byl kapitán Petr, možná by si toho všiml.

Treba si uvedomiť, že Titanic aj ľadovec sú zároveň vysielačom aj prijímačom, závisí to od
smeru. Ak Titanic vyšle zvuk s frekvenciou f , znamená to, že Titanic je zdroj pohybujúci
sa rýchlosťou v a ľadovec je stojaci prijímač, ktorý zachytí tento zvuk s frekvenciou

fl = f
cs

cs − v
.

Zvuk sa odrazí od ľadovca stále s frekvenciou fl, čiže ľadovec sa správa ako stojaci zdroj.
A Titanic sa teraz pohybuje zvuku naproti, čiže sa správa ako pohybujúci sa prijímač, čiže
zachytí zvuk s frekvenciou

f ′ = fl
cs + v

cs
= f

cs

cs − v

cs + v

cs
= f

cs + v

cs − v

.= 473 Hz .

Inými slovami: ľadovec sa správa ako zrkadlo, a teda proti sebe idú akoby dve lode Titanic,
prvá je zdroj a druhá je prijímač.

Šimon Pajger
legolas@fykos.cz

Úloha CF . . . vánoční stromeček
Martin se chtěl zbavit jehličí z vánočního stromku, tím že ho roztočí kolem osy
symetrie na úhlovou rychlost ω = 5,5 rad·s−1. Aproximujme vánoční stromek
jako tyč s výškou h = 1,5 m a poloměrem r/2 a 5 disků o poloměrech 1r, 2r,
3r, 4r, 5r, kde r = 15 cm s tloušťkou l = 5,0 mm. Středová tyč prochází skrz
disky (které tedy mají uprostřed díru) a má hustotu ρ = 900 kg·m−3. Disky mají
hustotu poloviční. Martina zajímá kolik energie potřebuje k tomuto roztočení.

Fykosáci a Martin čekali na přednášku.
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Kinetická energia rotačného pohybu je Ek = Iω2/2, takže nám zostáva zistiť už len moment
zotrvačnosti stromčeka I.

Ignorujme na chvíľu diery v diskoch. Moment zotrvačnosti pre plný disk s hmotnosťou m
a polomerom R je I = mR2/2. Hmotnosť spočítame ako súčin hustoty a objemu, čiže v tomto
prípade m = (ρ/2)πR2l. Spolu teda pre disk s polomerom R dostávame moment zotrvačnosti

I(R) = 1
4πρlR

4 .

Keď potom postupne podosádzame R = ir, dostaneme celkový moment zotrvačnosti diskov

Id =
5∑

i=1

1
4πρl(ir)

4 = 1
4πρlr

4(1 + 16 + 81 + 256 + 625) = 979
4 πρlr

4 .= 1,75 kg·m2 .

Zostáva nám už len stredová palica. Tá má taktiež tvar disku, len s relatívne veľkou výš-
kou v porovnaní s polomerom. Samotná palica by mala hmotnosť ρπ(r/2)2h, ale v miestach,
kde prechádza cez disky sme polovicu z jej hustoty už započítali do diskov. Musíme preto
odčítať (ρ/2)π(r/2)25l. Jej výsledný moment zotrvačnosti teda bude

Ip = 1
2πρ

r2

4

(
h− 5

2 l
)
r2

4 = 1
32πρ

(
h− 5

2 l
)
r4 .= 0,07 kg·m2 .

Vidíme, že Ip ≪ Id ⇒ Ip + Id ≈ Id, čo možno nie je až tak prekvapivé. Každopádne v rámci
našej presnosti by takáto aproximácia nebola dostačujúca, takže potrebnú energiu spočítame
ako

Ek = 1
2(Ip + Id)ω2 .= 27,5 J .

Šimon Pajger
legolas@fykos.cz

Úloha CG . . . kmitá mi stůl
Těleso o hmotnosti m = 100 g je položeno na desce, která harmonicky kmitá ve své rovině
s úhlovou frekvencí ω a amplitudou A = 3,0 cm. Jaká je hraniční ω taková, že deska začne pod
tělesem prokluzovat? Součinitel tření mezi tělesem a deskou je f = 0,60.

Pepa doučoval mechaniku.

Výchylku dosky voči rovnovážnej polohe počas jej kmitania vieme vyjadriť štandardným vzťa-
hom

x = A sin(ωt) .
Na teleso pri takomto pohybe dosky pôsobí zotrvačná sila veľkosti |F | = mẍ v smere proti
zrýchleniu ẍ dosky. Doska pritom začne prešmykovať v momente, keď veľkosť tejto sily presiahne
maximálnu treciu silu. V tomto hraničnom prípade bude platiť

mẍ = fmg .

Zrýchlenie dosky však vieme určiť podľa známeho vzťahu pre zrýchlenie v harmonickom pohy-
be ẍ = −ω2x alebo si ho vieme odvodiť ako druhú deriváciu výchylky podľa času

ẍ = −Aω2 sin(ωt) = −ω2x .
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Znamienko zrýchlenia tu udáva len jeho smer, takže ho môžeme ďalej zanedbať. Veľkosť zrých-
lenia dosky potom rastie s veľkosťou jej výchylky, teda maximálna veľkosť tohto zrýchlenia
bude

ẍmax = ω2A .

Stačí sa tak zamerať na prípad, v ktorom zotrvačná sila v momente maximálneho zrýchlenia
práve presiahne hodnotu trecej sily. Tento hraničný prípad nastane pre

mω2A = fmg ,

odkiaľ už jednoduchými úpravami vyjadríme potrebnú minimálnu uhlovú frekvenciu ako

ω =

√
fg

A

.= 14 rad·s−1 .

Tomáš Kubrický
tomas.kubricky@fykos.cz

Úloha CH . . . Platónův tok
Jaký je tok elektrického pole přes jednu stěnu pravidelného ikosaedru (dvacetistěnu), v jehož
středu sídlí náboj velikosti Q?

Jarda házel kostkou s dvaceti stěnami.

Celkový tok elektrického pole uzavřenou plochou je dle Gaussovy věty∮
E · dS = Q

ε0
.

Protože všech 20 stran ikosaedru je stejných, je tok jednou stranou Q/(20ε0), což je řešení naší
úlohy.

Jaroslav Herman
jardah@fykos.cz

Úloha DA . . . zahřívající se odpor
Máme zdroj napětí U = 250 V a rezistor, jehož odpor se s teplotou mění jako R(T ) = R0(1 +
+ α∆T ), kde R0 = 5,0 Ω je odpor při pokojové teplotě, α = 4,9 · 10−3 K−1 je teplotní koefi-
cient elektrického odporu a ∆T rozdíl teploty rezistoru od pokojové teploty. Předpokládejme,
že teplota rezistoru je oproti okolí vyšší o ∆T = βP , kde P je příkon na rezistoru a β =
= 1,5 · 10−2 K·W−1. Na jaké hodnotě se ustálí proud? Lego si stavěl obvod.

Príkon na rezistore je P = UI = U2/R. Tento vzťah dosadíme do vzorca pre teplotný rozdiel,
a ten následne do vzorca pre odpor

R = R0 +R0αβ
U2

R
.

Môžeme si to upraviť do kvadratickej rovnice pre odpor ako

R2 −RR0 −R0αβU
2 = 0 .
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Riešenia tejto rovnice sú

R1,2 =
R0 ±

√
R2

0 + 4R0αβU2

2 .

Riešenie s mínusom nám dá záporný odpor, čo nedáva fyzikálny zmysel, navyše je to „nestabilná
rovnováha“. Z tohto dôvodu zoberieme riešenie s plusom. Prúd potom bude

I = U

R
= 2U
R0 +

√
R2

0 + 4R0αβU2
=
√
R2

0 + 4R0αβU2 −R0

2R0αβU

.= 32 A .

Šimon Pajger
legolas@fykos.cz

Úloha DB . . . trojsrážka
Dvě identické hladké koule s poloměry r = 10 cm leží v klidu na vodorovném stole a jejich středy
jsou ve vzdálenosti d = 30 cm. Třetí identická koule se přibližuje rychlostí v = 1,0 m·s−1 po ose
úsečky dané jejich středy. Všechny srážky jsou okamžité a dokonale pružné. Jaká bude rychlost
přibližující se koule po srážkách? Zapište kladný výsledek, pokud půjde ve svém původním
směru, a záporný, pokud půjde v opačném směru.

Lego chtěl vymyslet úlohu na Jardův způsob.

Keďže gule sú dokonale hladké, nie je medzi nimi žiadne trenie, tým pádom budú pri zrážke na
seba pôsobiť iba normálovými silami. To znamená, že obe stojace gule odletia v smere, ktorý je
daný spojnicou ich stredu a stredu prichádzajúcej gule. Tento smer dostaneme z pravouhlého
trojuholníku, ktorého prepona je príslušná spojnica (dĺžka 2r) a jedna odvesna je polovica
úsečky medzi stojacimi guľami (dĺžka d/2). Na základe toho bude smer pohybu so smerom
prichádzajúcej gule zvierať uhol

φ = arcsin d

4r .

Zároveň zo symetrie je jasné, že prichádzajúca guľa sa bude po zrážke naďalej pohybovať buď
v smere svojej pôvodnej rýchlosti, alebo v presne opačnom smere. Označme si túto rýchlosť v1
(kde kladný smer je v smere jej pôvodnej rýchlosti). Zároveň zo symetrie vyplýva, že zvyšné
dve gule budú mať navzájom rovnakú veľkosť rýchlostí, označme si ju ako v2.

Potom zo zákona zachovania energie vyplýva

1
2mv

2 = 1
2mv

2
1 + 2 · 1

2mv
2
2 ,

v2 = v2
1 + 2v2

2 .

A zo zákona zachovania hybnosti

mv = mv1 + 2mv2 cosφ ,
v = v1 + 2v2 cosφ ,
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pretože zložky hybnosti v kolmom smere sa vyrušia. Vyjadríme si zo zákona zachovania hyb-
nosti v1 = v − 2v2 cosφ a dosadíme do zákona zachovania energie

v2 = (v − 2v2 cosφ)2 + 2v2
2 ,

v2 = v2 − 4vv2 cosφ+ 4v2
2 cos2 φ+ 2v2

2 ,

4v cosφ = 4v2 cos2 φ+ 2v2 ,

2v cosφ
2 cos2 φ+ 1 = v2 ,

kde sme sa riešenia v2 = 0 zbavili, pretože to by zodpovedalo situácii, kedy ku žiadnej zrážke
nedôjde. Zostáva dosadiť späť do zákona zachovania hybnosti a dostávame

v1 = v − 2v2 cosφ = v − 4 cos2 φ

2 cos2 φ+ 1v = 1 − 2 cos2 φ

2 cos2 φ+ 1v .

Z goniometrie vyplýva cos(arcsin x) =
√

1 − x2, čiže

v1 = d2 − 8r2

24r2 − d2 v
.= 0,067 m·s−1 .

Šimon Pajger
legolas@fykos.cz

Úloha DC . . . Wattův magnetický regulátor
Uvažme klasický Wattův regulátor sestávající ze svislé osy, ke které jsou v jednom společném
kloubu volně připevněna dvě nehmotná ramena délky l = 30,0 cm, na jejichž koncích jsou malá
kulová závaží s hmotnostmi m = 100 g. Když se tato osa roztočí, ramena se začnou vlivem
odstředivé síly zdvihat. V naší situaci jsou závaží navíc nabitá stejnými náboji q = 2,00 μC
a celý systém se nachází v homogenním magnetickém poli o hypotetické velikosti B = 750 kT
ve směru osy. Při jaké nejmenší velikosti úhlové rychlosti ω se ramena mohou rozepnout do
úhlu 2ϑ = 90,0◦? Petra baví magnetismus.

Rozepíšeme si sílu působící na jedno závaží v jednotlivých směrech. Ve vertikálním směru na
závaží působí pouze tíhová síla:

Fz = mg ,

přičemž jsme si zvolili kladný směr osy směrem dolů. V radiálním směru musíme počítat s od-
středivou, elektrostatickou a magnetickou silou – pro ty postupně platí

Fod = mω2r ,

Fel = 1
4πε0

q2

(2r)2 ,

Fmag = ±qωrB ,

kde r je vzdálenost závaží od osy. Při odvození vztahu pro Fmag rovnici jsme využili vztah pro
magnetickou sílu

F = q (v × B) ,
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do kterého jsme dosadili vztah pro rychlost při pohybu po kružnici v = ωr a poté jsme si uvědo-
mili, že se pohyb odehrává v horizontální rovině, na kterou je magnetické pole kolmé – vektorový
součin se proto zjednoduší na součin klasický a výsledný vektor bude mířit v radiálním směru.
Musíme zde také počítat s tím, že nevíme, kterým směrem míří magnetická indukce B a kte-
rým směrem se regulátor bude otáčet, a tedy ani nevíme, kterým směrem bude magnetická
síla působit (ačkoliv z požadavku na minimální rychlost otáčení tušíme, že se regulátor bude
otáčet v takovém směru, aby výsledná síla mířila radiálně od osy otáčení). Z geometrie určíme,
že r = l sinϑ, proto pro celkovou radiální sílu dostáváme

Fr = mω2l sinϑ+ q2

4πε0

1
4l2 sin2 ϑ

± qωlB sinϑ .

Aby byla soustava v rovnováze, musí být směr výsledné síly rovnoběžný s ramenem, na
kterém je závaží upevněno. Musí tedy platit

tg ϑ = Fr

Fz
,

což po úpravě vede na kvadratickou rovnici

ω2 ± qB

m
ω + q2

16πl3mε0

1
sin3 ϑ

− g

l

1
cosϑ = 0 ,

jejímiž kořeny jsou

ω =

∓
(

qB
2m

− 1
2

√
q2B2

m2 − q2

4πl3mε0
1

sin3 ϑ
+ 4g

l
1

cos ϑ

)
= ±2,15 rad·s−1 ,

∓
(

qB
2m

+ 1
2

√
q2B2

m2 − q2

4πl3mε0
1

sin3 ϑ
+ 4g

l
1

cos ϑ

)
= ∓17,1 rad·s−1 .

Otázka ze zadání zněla, při jaké nejmenší velikosti rychlosti dojde k rozepnutí, správným řeše-
ním je tedy menší velikost rychlosti

|ω| = 2,15 rad·s−1 .

Petr Sacher
petr.sacher@fykos.cz

Úloha DD . . . převrhlý vlak
Babička se dozvěděla o Coriolisově síle a při cestě vlakem z Prahy přesně na jih panikařila,
že vagóny nesmí jet příliš rychle, aby se nepřevrhly. Vagón má obdélníkový průřez šířky a =
= 3 150 mm a výšky b = 4 320 mm, s těžištěm uprostřed průřezu. Praha leží přibližně na 50◦

severní šířky. Jakou minimální rychlostí by vagón musel jet? Odhad postačí, relativistické efekty
lze ignorovat. Výsledek uveďte na dvě platné cifry.
Nápověda: Na těleso o hmotnosti m pohybující se rychlostí v ve vztažné soustavě, která rotuje
úhlovou rychlostí ω, působí Coriolisova síla FCor = −2mω × v.

Petr seděl ve vlaku, kde se děly divné věci.

Zajímá-li nás jen velikost Coriolisovy síly, stačí ve vztahu uvedeném v nápovědě uvážit místo
vektorového součinu jednoduchý součin velikostí ω krát v krát sinus úhlů mezi nimi. Vektor ω
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míří ve směru osy rotace, zeměpisná šířka se však měří od rovníku. Označme si úhel zeměpisné
šířky

ϑ = 50◦ ,

můžeme si pak rozmyslet, že úhel mezi vektory ω a v je π−ϑ, což nám po úpravě sinu a zanedbání
znaménka, které jen udává orientaci síly, dává pro velikost Coriolisovy síly

FCor = 2mωv sinϑ .

Aby se vagón převrátil, musí moment síly, kterým na něj působí Coriolisova síla, vyrovnat
moment síly, kterým na něj působí tíhová síla. Snadno si můžeme rozmyslet, že tíhová síla
působí největším momentem síly v momentě, kdy vagón není jakkoliv nachýlený. To znamená,
že nám stačí překonat tíhovou sílu jen na začátku převracení, pak už bude její vliv vždy jen
menší. Označíme-li α úhel mezi úhlopříčkou průřezu vagónu a vertikální osou, musí platit

mg sinα = 2mωv sinϑ cosα ,

upravíme-li tento vztah, využijeme-li tgα = a/b a vyjádříme-li ω = 2π/T , kde T je perioda
otáčení Země (tedy přibližně 24 h), dostáváme

v = gT

4π
a

b

1
sinϑ

.= 64 km·s−1 .

Petr Sacher
petr.sacher@fykos.cz

Úloha DE . . . Kam s ním?
Jan Neruda už má plné zuby svého starého slamníku. Místo toho, aby ho po troškách trousil
při procházkách z nohavic, rozhodne se slamník svázat do malé kuličky hmotnosti m = 20 kg
a vystřelit ji z podomácku vyrobeného katapultu od svého domu v Konviktské ulici č. p. 30
do Vltavy. Řeka je vzdálená L = 250 m a prostředních 13/15 trasy je zastavěno domy výš-
ky h = 18 m, které je potřeba přestřelit. Posledním krokem je vybrat do katapultu dostatečně
tuhou pružinu, která výstřel nálože zařídí. Jaká minimální tuhost pružiny je třeba, umožňuje-li
katapult její maximální natažení o x = 1,25 m? Katapultem je možné střílet pod libovolným
úhlem. Petr četl slavný Nerudův fejeton „Kam s ním?“.

Uvažme parabolickou dráhu, po které slamník poletí. Položíme-li si počátek našich souřadnic
doprostřed vzdálenosti, kterou musí přeletět, můžeme rovnici trajektorie napsat ve tvaru

y = −al2 +H ,

kde l je horizontální vzdálenost od prostředku dráhy, H je maximální výška, do které slamník
vyletí a a je parametr udávající tvar paraboly. Protože je na začátku slamník na zemi, platí

0 = −a
(
L

2

)2
+H .

Aby slamník při co možná nejmenší dosažené výšce H přeletěl řadu domů, které mu stojí v cestě,
musí platit

h = −a
(13

30L
)2

+H .
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Máme tedy soustavu rovnic

a = 225h
14L2

.= 4,63 · 10−3 m−1 ,

H = 225h
56

.= 72,32 m .

Aby slamník do výšky H vyletěl, musí být jeho počáteční vertikální rychlost taková, aby (kvůli
zákonu zachování energie) platilo

1
2mv

2
y = mgH ⇒ vy =

√
2gH .

Zároveň však potřebujeme, aby měl slamník na počátku vhodně velkou horizontální složku
rychlosti – pokud bude mít nesprávnou, poletí po jiné než námi kýžené trajektorii. Správná
horizontální rychlost je taková, že celková rychlost bude tečná na trajektorii. Víme, že tan-
gens tečny ke grafu v daném bodě je roven derivaci v tomto bodě. Pro naší derivaci obecně,
resp. konkrétně na začátku trajektorie platí

y′ = −2al ⇒ y′
(

−L

2

)
= aL ,

Využitím výše zmíněné vlastnosti derivace máme

vy

vx
= aL ⇒ vx =

√
2gH
aL

.

Zde se ještě pozastavme nad jednou myšlenkou – pokud by platilo∣∣∣vy

vx

∣∣∣ < 1 = tg π4 ,

tedy pokud by takový výstřel, který by těsně přeletěl domy stojící mu v cestě, byl vystřelen pod
úhlem menším než 45◦, bylo by výhodnější slamník vystřelit prostě pod úhlem 45◦, neboť při
tomto úhlu je poměr dostřelu a potřebné energie optimální. V našem případě však platí |aL| .=
.= 1,16, což znamená, že chceme balík střílet pod úhlem, při kterém mezi poměrem vx, vy

a aL platí rovnost.
Aby katapult dostřelil, musí být celou jeho počáteční kinetickou energii možné „uložit“ do

natažené pružiny. Využitím vztahu pro potenciální energii pružiny tedy máme
1
2m
(
v2

x + v2
y

)
= 1

2kx
2

a odtud už vyjádřením tuhosti k a dosazením dostaneme

k = 225
28

mgh

x2

(
1 + a2L2

a2L2

)
.= 32 kN·m−1 .

Úloha čerpá z fejetonu Jana Nerudy, v němž autor pojednává o tom, jak se zbavit starého
slamníku, který tehdy nebylo kam vyhodit. Autor navrhuje slamník například postupně trousit
z nohavic.

Petr Sacher
petr.sacher@fykos.cz

25

mailto:petr.sacher@fykos.cz


Fyziklání 2026 20. ročník 13. února 2026

Úloha DF . . . ďábelská
V nejhlubší propasti pekla je uprostřed zamrzlé plochy zaražen sám Lucifer se třemi tvářemi,
v každých ústech třímaje jednoho zrádce. Kolem něj je na ledu namalován pentagram tvořený
kruhem poloměru R, v němž je vepsaná pravidelná pěticípá hvězda. Ve třech z vrcholů hvězdy
se nachází náboj Q a ve třech z průsečíků hvězdy se nachází náboj q stejného znaménka. Jaký
musí být poměr Q/q, aby ve středu pentagramu, kde se nachází Lucifer bylo nulové elektrické
pole? Petr kdysi četl Božskou komedii.

Ze zadání víme, že náboje Q jsou od středu pentagramu vzdáleny R. Nicméně ještě musí-
me určit, jak vzdálené jsou náboje q. Ty se nacházejí na nějaké menší kružnici, označme její
poloměr a. Průsečíky pentagramu tvoří pravidelný pětiúhelník, rozdělíme-li ho na pět trojú-
helníků, dostáváme, že jeden trojúhelník má u středu kruhu vrchol s úhlem α = 360◦/5 = 72◦

a u zbylých dvou vrcholů je úhel β = 54◦. Uvažme útvar tvořený jedním cípem hvězdy a k němu
přilehlým trojúhelníkem z vnitřního pětiúhelníku. Součet výšek těchto trojúhelníků je přesně R,
všechny úhly uvnitř útvaru jsme schopni určit ze znalosti α a β. Použitím trochy trigonometrie
a úpravou jsme pak schopni a vyjádřit jako

a = R

tg 72◦ cos 54◦ + sin 54◦ .

Rozmysleme si, jak budou náboje umístěny. Na jednom kruhu mohou být náboje rozmístěny
buď tak, že spolu všechny tři sousedí, nebo že spolu sousedí dva a třetí je naproti jim. Tak či
tak, ze symetrie můžeme uvážit, že na druhém kruhu musí být náboje uspořádány tak, jako
kdybychom náboje na prvním kruhu souměrně zobrazili přes střed kruhu a přeškálovali na
poloměr druhého kruhu. Když si pak vyjádříme elektrickou intenzitu ve středu kruhu, která
bude součtem intenzit od nábojů na vnitřním kruhu Eq a od nábojů na vnějším kruhu EQ,
potřebujeme takovou velikost nábojů, aby platila podmínka

Eq + EQ = 0 .

Ovšem, díky symetrii mají až na znaménko Eq i EQ stejný tvar a liší se jen koeficien-
tem Q/R2, resp. q/a2. Dostáváme tak

Q

R2 = q

a2 ⇒ Q

q
=
(
R

a

)2
= (tg 72◦ cos 54◦ + sin 54◦)2 .= 6,85 .

Zajímavé je také podotknout, že platí√
R

a
= φ = 1,61803 . . . ,

kde φ je zlatý řez.

Petr Sacher
petr.sacher@fykos.cz
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Úloha DG . . . korálek na parabole
Mějme korálek hmotnosti m volně navlečený na drátě tvaru grafu paraboly y = ax2 v homo-
genním tíhovém poli. Drát roztočíme okolo osy („osy y“), která je rovnoběžná s g. Jaká musí
být úhlová rychlost ω, aby korálek při libovolném vychýlení po parabole neklouzal?

Petr vzpomínal na teoretickou mechaniku.

Vyjádřeme si vektorově síly, které na korálek působí. V x-ovém směru je to odstředivá síla
a v y-ovém směru je to tíhová síla. Platí tak

F =
[
mω2x
−mg

]
.

Korálek se může pohybovat jen po parabole. Aby se nepohyboval, musí výsledná síla na
korálek působit ve směru normály na parabolu – pokud by tomu tak nebylo, tečná složka by
způsobila, že by korálek po parabole „sklouznul“ jinam. Výsledná síla má směr normály právě
tehdy, když je výsledná síla kolmá na tečnu k parabole. Tu si však umíme jednoduše vyjádřit
pomocí derivace. Platí

y′ = 2ax ,

pro vektor ve směru tečny v bodě x tak platí

v =
[

1
2ax

]
.

Kolmost pak ověříme tím, že v a F musí mít nulový skalární součin. Podmínka na ω je tak

F · v = mω2x− 2mgax = 0 .

Z toho pak plyne
ω =

√
2ga .

Petr Sacher
petr.sacher@fykos.cz

Úloha DH . . . přebíhání před autem
Lego někdy přeběhne přes cestu příliš natěsno, tak si ře-
kl, že tentokrát si radši všechno spočítá pro případ, že by
auto řídil Radek, který kvůli chodcům nezpomaluje. Situ-
ace je zakreslena na obrázku. Jakou minimální rychlostí
musí Lego běžet, aby přeběhl před autem? Lego nemu-
sí nutně běžet kolmo k silnici. Výsledek vyjádřete jako
funkci veličin v, y, a.

Než si to Lego spočítal, bylo auto samozřejmě pryč.

Zadanie spomína, že Lego nemusí bežať kolmo k ceste. Bežať smerom k autu sa mu avšak
zrejme neoplatí, preto si označme vzdialenosť medzi najbližším bodom na opačnej strane cesty
a bodom, kam dobehne ako x. Ak dobehne do tohto bodu skôr ako auto, tak môžeme tvrdiť,
že ho stihol predbehnúť. Zároveň môžeme predpokladať, že Lego pobeží pomalšou rýchlosťou,
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než je rýchlosť auta. Z toho dôvodu, ak ho auto nedobehlo v tomto bode, nedobehlo ho ani
predtým. Nie je tým pádom ani dôvod, aby Lego nejako kľučkoval, ide len o to, čo najskôr dôjsť
do tohto konkrétneho bodu.

Vzdialenosť auta k bodu, kde Lego opustí cestu je a + x, čiže auto tam bude za čas (a +
+ x)/v. Legova vzdialenosť k tomuto bodu je

√
x2 + y2, a preto musí bežať rýchlosťou vL =

= v
√
x2 + y2/(a+ x).

Zostáva prísť na to, pre ktoré x je potrebná rýchlosť najmenšia. Na zistenie tejto rýchlosti
zderivujeme vL podľa x

dvL

dx = v

x(a+x)√
x2+y2

−
√
x2 + y2

(a+ x)2 ,

a hľadáme, kde sa derivácia rovná 0. To nastane práve vtedy, keď je čitateľ nulový

x (a+ x)√
x2 + y2

−
√
x2 + y2 = 0 ,

xa+ x2 = x2 + y2 ,

x = y2

a
.

Dosadíme späť do vyjadrenia potrebnej rýchlosti

vL = v

√
x2 + y2

a+ x
= v

√
y4

a2 + y2

a+ y2

a

= v
y
√
y2 + a2

a2 + y2 = v
y√

y2 + a2
.

Riešenie vo vzťažnej sústave auta
Túto úlohu vieme elegantne riešiť tiež vo vzťažnej sústave auta. V tej sa poloha auta po celý čas
nebude meniť. Zaveďme os x rovnobežne s cestou tak, aby sa auto nachádzalo na súradnici x = 0
Lego na začiatku na súradnici x = a. Lego stihne cez cestu prebehnúť práve vtedy, ak sa bude
počas celého svojho pohybu nachádzať na nezápornej x-ovej súradnici.

Hraničným prípadom bude, podobne ako v predošlom riešení, taký pohyb, pri ktorom Lego
dôjde na druhú stranu cesty v rovnakom okamihu, ako sa na tom istom mieste ocitne aj auto.
Lego sa tak na druhej strane cesty bude v tomto hraničnom prípade nachádzať práve na súrad-
nici x = 0. Keďže sa Legovi neoplatí kľučkovať v sústave spojenej s ním, tak aj jeho trajektória
vo vzťažnej sústave auta bude určite rovná úsečka.

Vieme tak už presne nakresliť trajektóriu Legovho pohybu v sústave spojenej s autom –
stačí nám úsečkou spojiť Legovu počiatočnú polohu a polohu auta na druhej strane cesty.
Presne tento smer tak musí mať aj Legova rýchlosť vo vzťažnej sústave auta. Ďalej tiež vieme,
že Legov vektor rýchlosti v tejto vzťažnej sústave vieme rozložiť na súčet vektora rýchlosti vL,
ktorou sa pohyboval v vzťažnej sústave zeme, a vektora rýchlosti −v, kde v je vektor rýchlosti
auta takisto vo vzťažnej sústave zeme.

Toto sčítanie vektorov vieme urobiť graficky, ako na obrázku nižšie. Vieme, že výsledni-
ca −v + vL musí udávať priamku spájajúcu Lega a predok auta. Máme teda priamku a bod
(koniec vektora −v), ktoré chceme spojiť najkratšou možnou úsečkou. A to je práve kolmica
na danú priamku z konca vektora −v.

28



Fyziklání 2026 20. ročník 13. února 2026

y

−v

vL
−

v

vL

ϕ

a

Lego

Takto už dostávame geometricky dvojicu pravouhlých trojuholníkov s jedným spoločným
uhlom φ. Preponu trojuholníka, po ktorej sa Lego pohybuje, vieme ľahko z Pythagorovej vety
dopočítať ako

√
y2 + a2. Odtiaľ už dostávame pre veľkosti jednotlivých rýchlostí a pomery

dĺžok strán v daných trojuholníkoch rovnicu

sinφ = vL

v
= y√

y2 + a2
,

čiže minimálna rýchlosť, ktorou sa Lego musí pohybovať, je

vL = v
y√

y2 + a2
.

Šimon Pajger
legolas@fykos.cz

Tomáš Kubrický
tomas.kubricky@fykos.cz

Úloha EA . . . rozpad kaonu
Částice kaon s celkovou energií EK = 500 MeV se rozpadne na dva identické piony se stejnou
energií. Jaký bude úhel α mezi směry, do kterých se piony rozlétnou? Klidová hmotnost kaonu
je mK = 498 MeV/c2 a klidová hmotnost pionu je mπ = 135 MeV/c2.
Nápověda: Jistě znáte proslulý vztah E = mc2. Ten lze ale také přepsat do podoby E =
=
√
m2

0c
4 + p2c2, kde m0 je klidová hmotnost. Využijte toho.

Petr se cvičil v částicové fyzice.

Energii pionu si označme Eπ, hybnosti pionů pπ,1 a pπ,2. Nejprve si upravíme jednotky. V čás-
ticové fyzice se obvykle používají přirozené jednotky, ve kterých pokládáme c = 1 a hmotnost
a hybnost píšeme v jednotkách energie. Přeznačíme si

m ≡ m0c
2 ,

p ≡ pc ,

konkrétně pro klidové hmotnosti kaonu a pionu máme

mK = 498 MeV ,

mπ = 135 MeV .

Díky vztahu
E =

√
m2 + p2
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a tomu, že piony mají stejnou energii, jistě víme, že piony musejí mít stejnou velikost hybnosti,
kterou označíme jednotně pπ. Zákon zachování hybnosti nám navíc dává

pK = pπ,1 + pπ,2 ,

p2
K = 2p2

π + 2p2
π cosα .

V druhé rovnici jsme si spočítali kvadrát velikosti hybnosti a využili vztahu pπ,1 ·pπ,2 = p2
π cosα.

Z toho si vyjádříme

p2
π = p2

K

2 (1 + cosα) .

Ze zákona zachování energie plyne

E2
K = (2Eπ)2 ⇒ E2

K = 4
(
m2
π + p2

π

)
,

z čehož po dosazení za p2
π můžeme vyjádřit

cosα = E2
K − 2m2

K + 4m2
π

E2
K − 4m2

π
.

Dosazením a inverzí kosinu máme
α
.= 168◦ .

Petr Sacher
petr.sacher@fykos.cz

Úloha EB . . . tři koule
Mějme tři ocelové koule s hmotnostmi m = 300 g uchycené na nehmotných provazech délky L =
= 75 cm, jejichž druhé konce jsou spojeny v jednom bodě. Každou z koulí nabijeme nábojem q =
= 5,0 μC. Když celý systém zavěsíme za bod, ve kterém jsou provazy spojené, jaká bude plocha
vodorovného trojúhelníka, který koule vytvoří? Nebojte se úlohu řešit přibližně nebo numericky.

Petr vzpomínal na kurz elektromagnetismu.

Ze symetrie jistě víme, že trojúhelník bude rovnostranný. Označme si délku jeho strany jako a.
Každý náboj pak na každý jiný působí silou

Fe = 1
4πε0

q2

a2 = kq2

a2

ve směru od středu trojúhelníku. Síla na jeden náboj však nebude jednoduše dvojnásobkem
velikosti síly od jednoho jiného náboje – složky síly působící proti sobě se díky symetrii vynulují
a zbyde složka ve směru osy nábojů. Ta bude mít velikost

Ftot = 2Fe cos 30◦ = kq2√
3

a2 .

Aby byl systém v rovnováze, musí být délka a taková, aby výsledná síla na kouli byla ve smě-
ru napnutí provazu. Pokud by nebyla, bude na koule působit nulový moment síly a v rovnováze
tedy nebudou. Pro výšku trojúhelníka platí

v =
√

3
2 a ,
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V

v

α

a

L

mg

Ftot

α

Obrázek 2: Nákres systému v rovnovážném stavu a sil působících na jednu z koulí.

pro tělesovou výšku vzniklého jehlanu zase platí

V =

√
3L2 − a2

3 .

Zde jsme využili vlastnosti rovnostranného trojúhelníka – střed jeho kružnice opsané (splývající
s těžištěm a středem kružnice vepsané) se nachází ve 2/3 výšky od vrcholu. Výše zmíněná
podmínka na sílu nám tak dává

tgα =
kq2√

3
a2

mg
= a√

3L2 − a2
,

kde α je úhel, o který se provazy odchýlí od vertikální osy. Úpravou a označením b ≡ a2

získáváme kubickou rovnici

b3 + b
3q4

16π2m2g2ε2
0

− 9q4L2

16π2m2g2ε2
0

= 0 ,

m2g2

3k2q4 b
3 + b− 3L2 = 0 .

Tu můžeme vyřešit numericky na kalkulačce. Protože jde o rovnici, ze které umíme snadno
vyjádřit b, nabízí se nám použití iterační metody. Ta je založena na tom, že rovnici upravíme
do tvaru b = f(b), a potom opakovaně dosazujeme poslední spočtený výsledek b′ zpět do
funkce f , dokud se výsledek nepřestane výrazněji měnit. Máme dvě možnosti, jak to udělat –
buď si vyjádříme b z lineárního, nebo z kubického členu. Kdybychom si b vyjádřili z lineárního
členu, velmi rychle bychom přišli na to, že daná posloupnost při iterování nebude konvergovat.
Vyplatí se proto vyjádřit si b z kubického členu

b = 3

√
C − b

A
≡ f(b) ,
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kde

A = m2g2

3k2q4
.= 57,184 m−4 ,

C = 3L2 .= 1,687 5 m2 .

Na kalkulačce lze iteraci provést efektivně tak, že si za b nejprve dosadíme nějaký počáteční
tip (např. 0,1), výraz vyčíslíme a každý výskyt b na pravé straně rovnice nahradíme kalkulač-
kovým ANS

ANSn+1 = 3

√
C − ANSn

A
,

kde ANSn je výsledek po n-té iteraci (po n-tém zmáčknutí =). Po několika iteracích tak dostávame

b
.= 0,290 2 m2 .

Obsah trojúhelníku je potom

S =
√

3
4 b

.= 0,13 m2 .

Petr Sacher
petr.sacher@fykos.cz

Vladimír Slanina
vladimir.slanina@fykos.cz

Úloha EC . . . zmenšený Měsíc
Ve filmu Já padouch hlavní postava Gru zmenší Měsíc a ukradne ho. Představte si, že by Gru
místo krádeže Měsíc jen instantně zmenšil, a to tak, aby pro poměr nové a původní hmotnosti
platilo m/M = 4/5; směr a velikost jeho celkové hybnosti by však zachoval a nechal by ho
vesele obíhat dále kolem Země. Jaká by byla jeho nová perioda oběhu τ? Uvažujte, že Měsíc
Zemi obíhá po kruhové dráze o poloměru R = 3,844 · 108 m a že hmotnost Měsíce je výrazně
menší, než hmotnost Země.

Petr koukal na Mimoně.

Nejprve využijeme zákona zachování energie, který můžeme pro zmenšený Měsíc psát ve tvaru

1
2m∥v∥2 − GmM⊕

r
= E .

Protože se bude zachovávat hybnost, můžeme určit rychlost Měsíce hned poté, co je změněna
jeho hmotnost:

mv = MR
2π
T

⇒ v = 2π
T

M

m
R .

Periodu T si zde můžeme vyjádřit z 3. Keplerova zákona. Ten nám říká, že pro libovolné
těleso obíhající kolem jiného (značně těžšího) tělesa platí

a3

T 2 = konst. ,
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kde T je oběžná perioda a a je hlavní poloosa elipsy, po které těleso obíhá. Neznámou konstantu
si můžeme spočítat z toho, že stejný vztah platí i pro kruhovou dráhu, kdy se gravitační síla
vyrovná s odstředivou a platí a = R; to popíšeme rovnicemi jako

m

(
4π2

T 2

)
R = GmM⊕

R2 ⇒ R3

T 2 = GM⊕

4π2 ,

odkud dostáváme

T = 2π√
GM⊕

R3/2 ⇒ v =

√
GM⊕

R

(
M

m

)
.

Díky tomu si můžeme vyjádřit konstantu1 E/m jako

E

m
= 1

2
GM⊕

R

((
M

m

)2
− 2
)
.

V polárních souřadnicích můžeme pro druhou mocninu velikosti rychlosti obecně psát

∥v∥2 = ṙ2 + r2φ̇2 ,

kde ṙ2 a r2φ̇2 jsou postupně okamžité velikosti radiální a oběhové rychlosti. Můžeme si uvědo-
mit, že v momentu, kdy se Měsíc nachází v perigeu nebo apogeu, je radiální složka rychlosti
nulová. V perigeu nebo apogeu tak máme ze zákona zachování energie rovnici

1
2mr

2φ̇2 − GmM⊕

r
= E ⇒ r3φ̇2 − 2E

m
r − 2GM⊕ = 0 .

Vyjádřeme si nyní okamžitou úhlovou rychlost φ̇. 2. Keplerův zákon (resp. zákon zachování
momentu hybnosti) nám říká, že platí

1
2r

2φ̇ = πR
2

T

M

m
= konst.

a my si tak můžeme vyjádřit

φ̇ = 2π
T

M

m

R2

r2 = M

m

√
GM⊕R

r2 .

Když toto dosadíme do vztahu, který jsme dostali výše ze zákona zachování energie v perigeu
nebo apogeu, dostáváme pro r kvadratickou rovnici

r2 + 2R(
M
m

)2 − 2
r −

(
M
m

)2
R2(

M
m

)2 − 2
= 0 ,

jejímž řešením jsou

r =

{
(M/m)2

2−(M/m)2R = 1,373 · 109 m
R = 3,844 · 108 m

Všimněme si, že jeden z výsledků odpovídá původní vzdálenosti Měsíce od Země R – tedy
hned po změně hmotnosti bude Měsíc v perigeu. Toho jsme si mohli všimnout už dříve, protože

1Jedná se skutečně o konstantu, protože se zachovává energie.
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hned po změně hmotnosti měl nulovou radiální složku rychlosti. Dále proto bude r označovat
pouze vzdálenost v apogeu; pak můžeme určit velikost hlavní poloosy elipsy, po které Měsíc
nově obíhá, jako

a = r +R

2 = 1
2 −

(
M
m

)2R = 16
7 R .

Tento výsledek nyní můžeme dosadit do třetího Keplerova zákona
a3

τ2 = GM⊕

4π2 ,

odkud vyjádřením τ dostáváme

τ =
(16

7

)3/2
T =

(16
7

)3/2 2π√
GM⊕

R3/2 .= 94,9 d .

Riešenie využitím rovnice vis-viva
Mesiac pred zmenšením obiehal rýchlosťou

v0 = 2πR
T

⇒ v2
0 = 4π2R2

T 2 = GM⊕

R
,

kde sme pri úpravách využili 3. Keplerov zákon
R3

T 2 = GM⊕

4π2 = konst. .

Rýchlosť v0 sa takisto zvykne označovať aj ako 1. úniková rýchlosť.
Podľa zadania sa pri zmenšení zachováva hybnosť, teda pre hmotnosť m a rýchlosť po

zmenšení v1 platí
v1m = v0M .

Potom úpravami dostávame:

v1 = M

m
v0 ⇒ v2

1 =
(
M

m

)2
v2

0 =
(
M

m

)2 GM⊕

R
.

Pre pohyb po eliptických a hyperbolických dráhach platí rovnica vis-viva

v2 = GM
(2
r

− 1
a

)
,

ktorá udáva vzťah medzi všeobecnou vzdialenosťou r od centrálneho telesa s hmotnosťou M ≫ m
na orbite s veľkou poloosou a (pre hyperbolické dráhy má táto poloos záporné znamienko)
a veľkosťou rýchlosti v v danom okamihu. V našom prípade obieha Mesiac okolo Zeme s hmot-
nosťou M⊕, v okamihu zmenšenia má rýchlosť v1 a vzdialenosť R od Zeme, preto platí

GM⊕

( 2
R

− 1
a

)
= v2

1 =
(
M

m

)2 GM⊕

R

a po úpravách
a = R

2 −
(

M
m

)2 = 16
7 R .

Tento výsledok je konzistentný s predchádzajúcim postupom.

Petr Sacher
petr.sacher@fykos.cz

Vladimír Slanina
vladimir.slanina@fykos.cz
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Úloha ED . . . antireflexní vrstva
Abychom zabránili tomu, že se nám od brýlí bude odrážet světlo (což například nevypadá
dobře na fotkách), můžeme na ně nanést antireflexní vrstvu. Představme si, že chceme nanést
antireflexní vrstvu z materiálu s indexem lomu n = 1,38 na brýle s indexem lomu N > n.
Jaká musí být nejmenší tloušťka vrstvy d, aby se při kolmém odrazu žádné světlo neodráželo,
uvažujeme-li pouze jeden odraz? Počítejte s obvyklou vlnovou délkou λ = 550 nm.

Petr chce vypadat hezky na fotkách.

Díky tomu, že N > n a n > n0 se nám při obou odrazech – na skle brýlí a na antireflexní vrstvě –
změní fáze o π. Když pak budou spolu odražené paprsky interferovat, bude fázový rozdíl vlivem
odrazu π−π = 0, díky čemuž nebude hrát roli. Potřebujeme, aby při průběhu antireflexní vrstvou
vlnění nabralo fázové zpoždění (2p+1)π, kde p ∈ N0 – pak bude vlnění prošlé antireflexní vrstvou
a odražené zpátky přesně v protifázi s tím, které se odrazí od antireflexní vrstvy a destruktivně
s ním zinterferuje. Při průchodu antireflexní vrstvou paprsek urazí dráhu 2d, optická dráha
tedy bude 2dn. Potřebujeme tedy

2dnk = (2p+ 1) π ,

kde k je vlnové číslo ve vakuu. To můžeme vyjádřit pomocí vlnové délky λ jako

k = 2π
λ

⇒ 2dn 2
λ

= (2p+ 1) .

Nejtenčí vrstvu dostaneme, pokud bude fázový rozdíl nejmenší, tedy p = 0. Dosazením za k,
p a vyjádřením d pak máme

d = λ

4n
.= 99,6 nm .

Petr Sacher
petr.sacher@fykos.cz

Úloha EE . . . pevně spojená fyzikální kyvadla
Mějme dvě hůlky o délce l = 15 cm, které obě visí za jeden svůj konec a mohou se okolo
bodu zavěšení volně otáčet. Tyto body závěsu jsou ve shodné výšce, jejich vzájemná vzdálenost
je rovna l a volné konce hůlek jsou spojeny hůlkou také o délce l. Všechny tři hůlky mají
hmotnost m = 300 g. Jaká bude perioda malých kmitů, pokud systém rozkýváme v rovině, ve
které hůlky leží? Systém se nachází v tíhovém poli se zrychlením g.

Lego zfyzikálnil svou úlohu.

Keďže sústava pozostáva z troch samostatne pohybujúcich sa častí vykonávajúcich rôzny harmo-
nický pohyb, nevyužijeme bežný postup využívajúci pohybovú rovnicu, ale radšej sa zameriame
na energie. Vyjadríme si preto potenciálnu a kinetickú energiu ako funkcie vychýlenia zvislých
paličiek φ a ich uhlovej rýchlosti φ̇.

Keď sú visiace paličky vychýlené o uhol φ voči zvislému smeru, sú stredy (ťažiská) dvoch
visiacich paličiek zdvihnuté o (l/2)(1 − cosφ) od rovnovážnej polohy a spájajúca palička je
zdvihnutá o l(1 − cosφ). Celkovo je potenciálna energia

Ep = mgl
(

21
2 + 1

)
(1 − cosφ) ≈ 2mglφ

2

2 ,
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kde sme rozvinuli kosínus do druhého rádu Taylorovho rozvoja ako cosφ ≈ 1 − φ2/2.
Visiace paličky sa otáčajú okolo svojho bodu uchytenia, okolo ktorého majú moment zotr-

vačnosti ml2/3, čiže keď sa pohybujú uhlovou rýchlosťou φ̇, kinetická energia každej z nich
bude

1
6ml

2φ̇2 .

Spájajúca palička sa neotáča, je celý čas vodorovne, tým pádom stačí použiť vzorec pre translač-
nú kinetickú energiu pre rýchlosť jej ťažiska. Ťažisko sa pohybuje po kružnici s polomerom l
uhlovou rýchlosťou φ̇, čiže rýchlosťou lφ̇. Potom kinetická energia je (1/2)ml2φ̇2. Celkovo je
kinetická energia

Ek =
(1

3 + 1
2

)
ml2φ̇2 = 5

6ml
2φ̇2 .

Teraz podľa analógie s lineárnym harmonickým oscilátorom upravíme energie na tvar

Ep = 1
2kefq

2 ,

Ek = 1
2mefq̇

2 ,

čím dostaneme, že efektívna tuhosť nášho kyvadla je kef = 2mgl a efektívna hmotnosť mef =
= 5ml2/3. Keďže ako súradnicu používame uhol, majú tieto dve veličiny rozmer direkčného
momentu resp. momentu zotrvačnosti. Každopádne zostáva dosadiť do vzorca pre periódu ma-
lých kmitov

T = 2π
√
mef

kef
= 2π

√
5
3ml

2

2mgl = 2π
√

5l
6g

.= 0,71 s .

Nakoniec poznamenajme, že úloha sa dala riešiť aj bežným postupom pre fyzikálne kyvadlo,
pretože pohyb jednotlivých komponentov je nezávislý od ich polohy. Môžeme si ich preto virtu-
álne presunúť tak, aby boli ich osi otáčania v jednom spoločnom bode. Takéto výsledné kyvadlo
by malo hmotnosť M = 3m a celkový moment zotrvažnosti I = ml2/3+ml2/3+ml2 = 5ml2/3
(keďže sa vodorovná palička neotáča, má moment zotrvačnosti hmotného bodu). Vzdialenosť ťa-
žiska tohto kyvadla od spoločnej osi by sa spočítala ako priemer vzdialeností ťažísk jednotlivých
komponentov L = (l/2 + l/2 + l)/3 = 2l/3. Tieto hodnoty opäť stačí dosadiť do tabuľkového
vzťahu a dostaneme rovnaký výsledok ako predchádzajúcim postupom

T = 2π
√

I

MgL
= 2π

√
5l
6g .

Šimon Pajger
legolas@fykos.cz

Jakub Kliment
jakub.kliment@fykos.cz
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Úloha EF . . . uvnitř zářivé koule
Představte si, že se nacházíte uvnitř prázdné sféry o poloměru Slunce R⊙ ve vzdálenosti R⊙/2
od jejího středu. Stěny sféry mají teplotu povrchu Slunce T = 5 800 K. Určete velikost a směr
síly, kterou na vás působí tlak záření vyzařovaného stěnami. Své tělo aproximujte koulí s prů-
řezem S = 0,70 m2 a s hmotností m = 70 kg a předpokládejte, že absorbujete η = 55 %
dopadajícího záření. Uvažujte, že element sféry vyžaruje izotropně.

Vlado off-topicoval na vánočním posezení.

Uvažujme element sféry, ktorý vyžaruje izotropne. Intenzita žiarenia I tohto elementu klesá
podľa zákona prevrátených štvorcov, ktorý hovorí, že I klesá s druhou mocninou vzdialenosti
od zdroja

I ∝ r−2 .

Sila, ktorou pôsobí žiarenie na teleso, je spôsobená zmenou hybnosti fotónov pri zrážke
s daným telesom. Pri úplnom pohltení fotónov ide o perfektne neelastickú zrážku a pri úplnom
odraze ide o perfektne elastickú zrážku. Tlak žiarenia P (sila žiarenia na jednotku plochy) bude
preto úmerný zmene hybnosti fotónov p, a teda2

P ∝ ∆p ∝ p ∝ Efotón ∝ I ∝ r−2 .

Tlak žiarenia, ktoré vyžaruje element povrchu gule je úmerný r−2. Pre presné odvodenie sily,
ktorou pôsobí žiarenie na teleso, by sme museli zohľadniť geometriu telesa a vypočítať osobitne
vplyv pohlteného a odrazeného svetla, ale všetky tieto efekty sú vo výsledku úmerné P, čiže
platí F ∝ P ∝ r−2. Táto úloha je tým pádom matematicky ekvivalentná hľadaniu sily, ktorou
pôsobí nabitá sféra na teleso v jej vnútri, ktoré je nabité nábojom s rovnakým znamienkom.
Podľa Gaussovho zákona je táto sila nulová, teda

F = 0 N .

Vladimír Slanina
vladimir.slanina@fykos.cz

Úloha EG . . . to je nejlepší pirát, jakého jsem poznal
Jack Sparrow pluje rychlostí v0 do přístavu na proděravělé lodi. Voda do ní vniká konstantním
tokem Q, její celkový objem je V a i s pirátem má hmotnost m0. Zatím vodu stíhá vylévat
ven pomocí vědra, ale aby si zachoval svou pirátskou auru, hodlá s tím v jistou chvíli přestat
a nechat loď volně doplout až k molu, načež se loď potopí. V jaké vzdálenosti od mola má vodu
přestat vylévat? Odporové síly neuvažujte. „Zřejmě to tak je,“ řekl Petr.

Kvůli tomu, že do lodi natéká voda, bude její hmotnost v čase t od ukončení vylévání rovna

m(t) = m0 +Qρt .

Z Archimédova zákona víme, že vztlaková síla působící na loď je úměrná objemu, který je pod
vodu ponořený. Největší bude, pokud bude celá loď ponořená, tedy

Fmax = V ρg .

2Úplne odvodenie tohto vzťahu je v úlohe odpudivé světlo.
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Aby se loď nepotopila, musí maximální vztlaková síla vždy převažovat tíhovou, tedy musí platit

V ρg − (m0 +Qρt) g ≥ 0 .

Z toho máme v mezním případě, kdy se síly přesně vyrovnají pro mezní čas T , podmínku

T = V ρ−m0

ρQ
.

Za čas T od okamžiku, kdy Jack Sparrow přestane vylévat natékající vodu, musí loď překonat
vzdálenost d a dorazit k molu. Nicméně, protože mění svou hmotnost, bude se měnit i její
rychlost. Zákon zachování hybnosti nám dává

m0v0 = m(t) v(t) ,

z čehož si pomocí znalosti m(t) můžeme vyjádřit časovou závislost rychlosti lodi v(t) jako

v(t) = m0v0

m0 +Qρt
.

Tu nám nyní stačí jen zintegrovat od počátečního času 0 až do času T . Máme

d =
∫ T

0

m0v0

m0 +Qρt
dt ,

u = m0 +Qρt ⇒ d = m0v0

Qρ

∫ m0+QρT

m0

1
u

du ,

d = m0v0

Qρ
[lnu ]m0+QρT

m0
,

což nám po dosazení za T dává
d = m0v0

Qρ
ln
(
V ρ

m0

)
.

Jednou z chyb, kterou bychom mohli při řešení udělat, je předpokládat zachování energie,
které ovšem neplatí, tedy

1
2m0v

2
0 ̸= 1

2mv
2 .

Je tomu tak proto, že voda se s lodí vlastně dokonale nepružně sráží.

Petr Sacher
petr.sacher@fykos.cz

Úloha EH . . . grilovaný Říman po sicilsku
Archimédés měl údajně na obranu Syrakus sestavit stroj z leštěných měděných zrcadel, který
měl zapálit nepřátelské lodě.

Představme si takový stroj, který se v naší rekonstrukci skládá z měděného plátu prohnu-
tého do tvaru paraboly dané rovnicí ve tvaru η = πξ2, kde π je nějaký parametr. Velikost
parametru π, a tedy i zaměření „zrcadla“ můžeme měnit otáčením klikou, přičemž otočení kliky
souvisí s parametrem π lineárně jako π = αϑ + ϑ0, kde ϑ je otočení kliky v radiánech a α =
= 2,0 · 10−5 m−1·rad−1. Nepřátelskou loď je potřeba zaměřit, tedy umístit do ohniska paraboly.
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Ta se k nám přitom blíží rovnoměrně přímočaře rychlostí ν = 15 km·h−1 a v čase τ0 = 0 je
zaměřena ve vzdálenosti φ0 = 1,0 km. Jakou rychlostí musíme klikou otáčet v čase τ = 3,0 min,
aby loď zůstala zaměřená?

Petr sledoval video o punských válkách.

V první fázi bychom měli zjistit, jak souvisí vzdálenost ohniska φ s jediným parametrem parabo-
ly, kterým je π. Pokud tuto souvislost neznáme, nevadí – odvodíme si ji. Parabola je definována
jako křivka, jejíž všechny body jsou ve stejné vzdálenosti od ohniska Φ a tzv. řídící přímky.
Zaveďme si souřadnou soustavu [ξ, η] s počátkem ve vrcholu našeho zrcadla a s osou η směrem
k lodi. V naší situaci pak Φ leží v bodě Φ = [0, φ]. Řídící přímka má rovnici η = −φ, což
jednoduše zjistíme z toho, že bod [0, 0] od ní musí být vzdálený φ a musí ležet pod parabo-
lou. Mějme bod na parabole A = [ξ, η] a bod na řídící přímce kolmo pod ním B. Pro velikost
vzdáleností |ΦA| a |AB| platí

|ΦA| =
√
ξ2 + (η − φ)2 ,

|AB| = (η + φ) .

Z definice paraboly musí platit rovnost

|ΦA| = |AB| ,

která nám použitím vztahů výše, dosazením za η a vyjádřením φ dává

φ = 1
4π .

Vzdálenost místa, kde bychom chtěli mít ohnisko, se v čase vyvíjí jako

φ = φ0 − ντ ,

Dosazením do vztahu pro φ výše za π zjistíme, že platí

φ = 1
4 (αϑ+ ϑ0) .

Máme tak rovnost
1

4 (αϑ+ ϑ0) = φ0 − ντ .

Vyjádřením úhlu pootočení kliky ϑ máme pro časovou závislost

ϑ(τ) = 1
4α (φ0 − ντ) − ϑ0

α
.

Abychom zjistili požadovanou úhlovou rychlost otáčení kliky ω, stačí tuto rovnici zderivovat
podle času a máme

ω = ϑ̇ = ν

4α
1

(φ0 − ντ)2

a dosazením zadaných hodnot dostáváme

ω
.= 0,83 rad·s−1 .

Petr Sacher
petr.sacher@fykos.cz
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Úloha FA . . . hvězdodrap
Marek chce postavit v zeměpisné šířce φ = 15◦ věžák, který se bude dotýkat hvězd. Jak musí být
vysoký, aby zpomalil rotaci Země o 1 %? Zemi uvažujte jako homogenní kouli o hmotnosti M ,
která se touto stavbou nezmění, protože hmotu Marek vytáhne z bílé díry. Předpokládejme, že
hmota je po vytvoření nehybná a právě její roztočení zpomalí Zemi. Uvažujte dále, že tento
hvězdodrap je dost tenký, je homogenní a má hmotnost m = 33 · 10−4M .

Marek se rád dívá na věci s nadhledem.

Při stavbě věžáku se zachová moment hybnosti Země L, který měla před započetím stavby.
Platí

L = Jω = 2
5MR2ω ,

kde J je moment setrvačnosti Země před stavbou, ω její úhlová frekvence, M hmotnost Země
a R její poloměr. Použili jsme vztah pro moment setrvačnosti homogenní koule.

Jaký bude moment setrvačnosti soustavy po stavbě? Bude se skládat ze dvou částí – Země,
která bude mít stejný moment setrvačnosti jako předtím, a přidá se moment setrvačnosti věžáku.
Spočtěme, jaký má moment setrvačnosti homogenní tyč délkové hustoty λ a délky l okolo svého
středu, pokud je nakloněná o úhel α = 90◦ − φ od osy otáčení, což bude právě příklad našeho
hvězdodrapu.

Představíme si, že tyč je složena z malých částí o délce dl. Jejich hmotnost bude dm = λdl.
Pokud uvážíme souřadnici x ve směru tyče kolmo na osu otáčení, bude promítnutí délky dl do
tohoto směru dx = dl cosφ. Z definice pak moment setrvačnosti věžáku bude

J ′
v =

∫
x2 dm =

∫ l cos φ/2

−l cos φ/2
x2 λ

cosφ dx = 1
12 (λl) l2 cos2 φ ,

a protože m = λl je hmotnost tyče, tak pro tyč kolmo na osu otáčení dostaneme známý vzo-
rec (1/12)ml2, což potvrzuje správnost našeho výsledku.

Naše tyč má ale střed hmotnosti ve vzdálenosti d = (R + l/2) cosφ od osy otáčení Země,
a podle Steinerovy věty bude proto její moment setrvačnosti okolo této osy Jv = J ′

v +md2.
Označme úhlovou frekvenci po stavbě ω′. Máme pak celkovou rovnici

L = Jω = (J + Jv)ω′ ,

Jω =
(
J + 1

12ml
2 cos2 φ+m

((
R+ l

2

)2
cos2 φ

))
ω′ ,

0 = 1
3 l

2 +Rl +
(
R2 − J

m cos2(φ)

(
ω

ω′ − 1
))

,

l = 3R
2

(
−1 +

√
1 − 4

3

(
1 − J

R2
1

m cos2(φ)

(
ω

ω′ − 1
)))

=

= R

2

(
−3 +

√
9 − 12 + 24M

495m cos2 φ

)
= R

2

(
−3 +

√
8M

165m cos2 φ
− 3
)
,
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kde jsme vybrali fyzikálně relevantní kladný kořen, v posledním kroku jsme dosadili za J a vy-
užili toho, že ze zadání ω′/ω = 99/100. Dosazením za m a φ dostaneme l .= 1 800 km.

Marek Milička
marek.milicka@fykos.cz

Úloha FB . . . kmitající hmotná kladka
Mějme homogenní kladku s hmotností m ve tvaru disku o poloměru r. Tuto kladku zavěsíme
o strop tak, že na jedné straně je lano přivázané přímo o strop a na druhé straně přes pružinu
s tuhostí k. Kladku z rovnovážné polohy potáhneme o trochu níže. Jaká je perioda malých
kmitů? Kladka po laně neprokluzuje. Prý je málo kmitů, tak Lego navrhl.

V rovnovážnej polohe je lano napínané silou mg/2, a to je zároveň sila, ktorou ťahá pružina
lano.

Keď kladku potiahneme nadol tak, že sa jej stred posunie o x nadol, musí sa pružina predĺžiť
o ∆y = 2x voči svojej dĺžke v rovnovážnej polohe (pretože na druhej strane sa lano vôbec
nepredĺži). Bude tým pádom pôsobiť silou o ∆Fk = k∆y = 2kx vyššou oproti rovnovážnemu
prípadu, čiže Fk = mg/2 + 2kx. A to je práve sila, ktorou je jedna strana kladky ťahaná nahor.
Nakoľko sa jedná o hmotnú kladku, nevieme, akou silou je ťahaná nahor druhá strana, označme
si túto silu T = mg/2 + ∆T (mohli by sme si tú silu označiť iba ako T a počítať s ňou, avšak
tento rozklad je praktickejší).

Potom celková sila pôsobiaca na kladku je

F = Fk + T − Fg = mg/2 + 2kx+mg/2 + ∆T −mg = 2kx+ ∆T ,

kde smer nahor berieme ako kladný. Zároveň je už snáď jasné, prečo je substitúcia T = mg/2 +
+ ∆T taká užitočná. Zrýchlenie kladky potom bude a = (2kx+ ∆T )/m.

Pozrime sa teraz na moment sily. Tiaž kladky má voči jej stredu nulový moment. Laná
na oboch stranách majú rameno sily r, avšak každé z nich roztáča kladku opačným smerom.
Za kladný smer rotácie zvolíme ten, pri ktorom strana kladky pod pružinou rotuje nahor (na-
koľko to sa presne bude diať, keď kladka pôjde týmto smerom). Potom moment sily je

M = rFk − rT + 0Fg = r(mg/2 + 2kx) − r(mg/2 + ∆T ) = r(2kx− ∆T ) .

Moment zotrvačnosti disku je I = mr2/2, tým pádom uhlové zrýchlenie je

ε = M

I
= r(2kx− ∆T )

mr2/2 = 22kx− ∆T
mr

.

Keďže sa lano na strane bez pružiny nepohybuje, je zrejmé, že rýchlosť stúpania a obvodová
rýchlosť musia mať rovnakú veľkosť (pretože kladka sa akoby kotúľa po lane, a to teda nahor).
Rovnaký vzťah preto musí platiť aj pre zrýchlenie a „obvodové zrýchlenie“

a = εr ,

2kx+ ∆T
m

= 22kx− ∆T
m

,

2kx+ ∆T = 4kx− 2∆T ,

∆T = 2
3kx .
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Môžeme dosadiť ∆T do zrýchlenia a dostávame

−ẍ = a = 2kx+ ∆T
m

= 8
3
k

m
x ,

čo je rovnica lineárneho harmonického oscilátora s ω2 = 8k/(3m), takže perióda malých kmitov
bude

T = 2π
√

3
8
m

k
.

Šimon Pajger
legolas@fykos.cz

Úloha FC . . . motokros derby
Tři motorkáři Pepa, Vojta a Marek jsou i se svými motorkami rozestaveni do tvaru rovnostran-
ného trojúhelníku se stranou délky a. V čase t = 0 se všichni najednou začnou pronásledovat
rychlostí v0, přičemž Pepa pronásleduje Vojtu, Vojta Marka a Marek Pepu. Nechtějí se ale sra-
zit v plné rychlosti, čím víc se k sobě tedy přiblíží, tím víc budou zpomalovat. Jejich rychlost
bude proto přímo úměrná vzájemné vzdálenosti v(l) = (l/a)v0. Jak dlouho bude Vojtovi trvat,
než se přiblíží k Markovi na vzdálenost x (pokud x < a)?.

Kubo má doma už třetí motorku.

Ako prvé je potrebné si uvedomiť, že pohyby všetkých troch motorkárov budú navzájom syme-
trické vzhľadom na stred pôvodného trojuholníku. Ich vzájomné polohy budú preto stále tvoriť
vrcholy rovnostranného trojuholníka, ktorého stred bude stále na pôvodnom mieste, avšak po-
stupne sa bude zmenšovať dĺžka strany a meniť jeho orientácia.

x

√

3

2
v

a
√

3

a

v

v

v

Obrázek 3: Schéma situácie s vyznačenými trajektóriami.

Pozrime sa na radiálnu vzdialenosť niektorého z motorkárov od stredu trojuholníka. V ča-
se t = 0 bude mať hodnotu r0 = a/

√
3. Následne sa bude motorkár v tomto smere približovať

k stredu rýchlosťou v
√

3/2 (priemet jeho rýchlosti na radiálny smer). Bude preto platiť

ṙ = −
√

3
2
l

a
v0 = −3

2
r

a
v0 .
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Pokles hodnoty r(t) je teda priamo úmerný jej okamžitej hodnote. Z toho vyplýva exponenciálny
pokles

r(t) = r0 exp
(

−3
2
v0

a
t
)
.

Požiadavku na vzájomnú vzdialenosť dvoch motorkárov rovnú x si vieme preformulovať na
zhodnosť pomerov r/r0 a x/a. Následne už stačí len upraviť vzniknutú rovnicu a vyjadriť z nej
hľadaný čas t,

r(t)
r0

= exp
(

−3
2
v0

a
t
)

!= x

a
,

t = 2a
3v0

ln
(
a

x

)
.

Jakub Kliment
jakub.kliment@fykos.cz

Úloha FD . . . kuželový kelímek
Uvažme kelímek ve tvaru dutého kužele výšky h bez podstavy, jehož vrcholový úhel je α.
Kelímek až po okraj naplníme tekutinou hustoty ρ. Protože by takový kelímek špatně stál dnem
dolů, prudce ho otočíme dnem vzhůru a položíme na stůl tak, že ani trocha kapaliny nevyteče.
Jaká vztlaková síla působí na kelímek? Kapalina ve vrcholu vnitřku kužele má atmosférický
tlak. Petr našel tento příběh ve vietnamské učebnici.

Síla, kterou bude kapalina na kelímek působit je způsobena hydrostatickým tlakem

p = zρg ,

kde z je hloubka, ve které se kelímek nachází. Hydrostatický tlak je „dodatkem“ k atmosfé-
rickému tlaku, který působí z vně na kelímek a kterým pak působí kapalina nazpět. Kapalina
v úplné špičce kelímku tak působí na kelímek pouze atmosférickým tlakem. Protože se tento
konstantní příspěvek odečte s vnějším tlakem, nemusíme ho uvažovat.

Uvažme malý element vnitřní plochy kelímku dS, síla, kterou na něj kapalina působí je dF =
= p dS. Ovšem, ze symetrie vidíme, že pokud se všechny tyto infinitisimální síly posčítají,
radiální složky se navzájem vynulují a zbyde jen síla ve směru nahoru. Stačí nám tedy uvažovat
jen průmět dF ve směru nahoru, pro ten máme z jednoduché geometrie

dF↑ = dF sin α2 .

Abychom dostali celkovou sílu, musíme zintegrovat

F =
∫

S

dF↑ .

Kelímek můžeme popsat dvěma cylindrickými parametry z ∈ ⟨0, h⟩ a φ ∈ ⟨0, 2π), poloměr
kelímku bude závislá proměnná, pro kterou můžeme odvodit

R = z tg α2 .
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Posledním krokem před integrací je rozmyslet si, jak bude vypadat element plochy dS vy-
jádřený v námi zvolených souřadnicích.3 Uvážíme-li infinitisimálně malý čtvereček vyříznutý
z pláště kuželu rozměrů dx a dy, kde dx je ve vodorovné rovině a dy ve směru k vrcholu, máme

dS = dx dy .

Vyjádřeme nyní dx a dy pomocí dφ a dz. Máme

dx = R(z) dφ = z tg α2 dφ ,

uvážíme-li navíc, že dz je vlastně průmět dy do vertikální osy, dostaneme

dy = 1
cos α

2
dz .

Když předchozí výsledky dosadíme do integrálu pro F a upravíme, máme

F =
∫

S

p(z) sin α2 dxdy = tg2 α

2 ρg
∫ h

0

∫ 2π

0
z2 dφdz .

Nakonec tak dostáváme
F = 2

3πρg tg2(α
2

)
h3 .

Petr Sacher
petr.sacher@fykos.cz

Úloha FE . . . rychlotočná konvice
Marek má tenkou tepelně nevodivou kulovou vrstvu o poloměru R a hmotnosti M plnou vody.
Kouli roztočí tak, že voda vevnitř zůstane nehybná. Koule se interakcí s vodou začne zpomalovat
a po dlouhé době Marek zjistí, že teplota vevnitř vzrostla o ∆T . Na jakou úhlovou rychlost
kouli roztočil?

Uvažujte, že voda má konstantní hustotu ρ a měrnou tepelnou kapacitu cv. Kvůli tření,
které taky zahřívá vodu, se nezachová moment hybnosti. Marek se potloukal na matfyzu.

Rotační energie slupky se přemění na tepelnou, která ohřeje vodu. Rotační energie je

Erot = 1
2Jω

2 ,

kde J je moment setrvačnosti kulové vrstvy. Pro tepelnou energii platí

Etep = mcv∆T = 4
3πR

3ρcv∆T ,

kde m je hmotnost vody uvnitř.
Zbývá nám spočíst moment setrvačnosti kulové slupky. Protože je slupka homogenní, za-

veďme si plošnou hustotu
σ = M

S
= M

4πR2 ,

3To kromě uvedeného postupu můžeme odvodit nudně matematicky tak, že si spočítáme normu vektorového
součinu derivací vektoru, kterým kužel parametrizujeme, jak nás učí teorie plošného integrálu prvního druhu.
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kde S je povrch slupky. Představíme si, že kouli rozřežeme „vodorovně“ (kolmo na osu otáčení)
na tenké obruče, které jsou ve výšce z, která půjde od −R do R. Každý z nich má poloměr r,
který určuje vzdálenost od osy otáčení, a výšku dz. Z Pythagorovy věty máme r =

√
R2 − z2

a plocha prstýnku dS = 2πR dz. Hmotnost prstýnku je

dm = σ dS = M dz
2R .

Jeden prstýnek bude mít moment setrvačnosti

dJ = r2 dm =
(
R2 − z2) M

2R dz ,

abychom spočetli celkový, musíme přesčítat, přesněji vyintegrovat, přes všechna z, tedy

J = M

2R

∫ R

−R

(
R2 − z2) dz = M

2R

(
2R3 − 2

3R
3
)

= 2
3MR2 .

Zbývá dosadit do vzorce pro energii a dostáváme

Erot = Etep ,

1
3MR2ω2 = 4

3πR
3ρcv∆T ,

ω = 2

√
πRρcv∆T

M
.

Marek Milička
marek.milicka@fykos.cz

Úloha FF . . . definiční
Uvažujme homogenní tyč postavenou na zemském povrchu svisle vzhůru. Jaká musí být dél-
ka této tyče, aby bylo její těžiště, tj. působiště gravitační síly, ve vzdálenosti 1,0 m od jejího
hmotného středu?
Nápověda: Mohlo by se vám hodit, že pro malá x platí ln (1 + x) ≈ x− x2/2 + x3/3.

Marek rozjímal o své výšce.

Střed hmotnosti homogenní tyče je v jejím středu, tedy ve výšce ys = L/2 nad zemí.
Těžiště je vážený průměr vzdáleností přes kousky tyče, kde váhy jsou síla působící na daný

kousek. Protože je tyč homogenní, má konstantní lineární hustotu, hmotnost na metr dél-
ky λ = M/L, kde M je hmotnost tyče a L její délka. Gravitační síla působící na kousek
o hmotnosti dm je

dFg = G
MZ dm
r2 = G

MZλdr
r2 ,

kde r je vzdálenost daného kousku od středu Země, MZ je hmotnost Země a dr je délka daného
kousku.

Vážený průměr přes kousky je pak

rp =
∫
r dFg∫
dFg

=
∫ R+L

R
r 1

r2 dr∫ R+L

R
1

r2 dr
,

45

mailto:marek.milicka@fykos.cz


Fyziklání 2026 20. ročník 13. února 2026

kde R je poloměr Země. Spočtením integrálů dostaneme

rp =
ln R+L

R
1
R

− 1
R+L

= R(R+ L)
L

ln
(

1 + L

R

)
.

Abychom se dopočetli výsledku, použijeme Taylorův rozvoj logaritmu, protože bude jistě pla-
tit L ≪ R. Pak platí

ln
(

1 + L

R

)
≈ L

R
− L2

2R2 + L3

3R3 .

Dosadíme

rp ≈ R(R+ L)
L

(
L

R
− L2

2R2 + L3

3R3

)
=

= R
(

1 + L

R

)(
1 − L

2R + L2

3R2

)
≈

≈ R+ L

2 − L2

6R ,

kde jsme v posledním kroku zanedbali členy nejvyššího řádu v L/R. Podívejme se na výsledek –
výška těžiště je téměř ve výšce R+L/2 nad středem Země, jako střed hmotnosti, jediný poslední
člen dělá rozdíl a ten má právě být jeden metr.

Dosazením dostaneme L ≈ 6,2 km.

Marek Milička
marek.milicka@fykos.cz

Úloha FG . . . nová lampa
Vlado si koupil novou lampu, ale jak už to v poslední době bývá, k novým zařízením vám dají
jenom kabel bez adaptéru. Vlado má k dispozici U = 24 V adaptér, ale nominální napájení nové
lampy je UL = 12 V. Rozhodl se tedy, že ji k tomuto adaptéru napojí přes potenciometr, který
zapojil jako napěťový dělič. Uvažujte, že lampa má mít příkon PL = 12 W. Vlado myslí na pla-
netu a chce účinnost celé soustavy alespoň η = 40 %. Vypočítejte celkový odpor potenciometru,
při kterém obvodem prochází nejvyšší proud.

Vlada (ne)osvítilo.

Označme si celkový odpor potenciometra ako R, odpor časti potenciometra v rozvetvenej časti
obvodu ako RX (obr. 4) a odpor lampy ako RL = U2

L/PL = 12 Ω. V oboch vetvách je rovnaké
napätie UL, preto podľa 1. Kirchhoffovho zákona platí

I = UL

RL
+ UL

RX
. (3)

Celková účinnosť obvodu je rovná pomeru výkonu lampy PL a výkonu zdroja P , teda

η = PL

P
=

U2
L

RL

UI
⇒ I = U2

L
ηURL

.
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Z tohto vzťahu vyplýva, že najväčší prúd, ktorý môže pretekať obvodom nie je ovplyvnený RX
ani R. Naopak je nepriamo úmerný η, preto najväčší prúd dosiahneme pre najmenšiu možnú
hodnotu η = 0,4.

Po dosadení do vzťahu (3) získavame

U2
L

ηURL
= UL

RL
+ UL

RX
,

RX = RL
1
η

UL
U

− 1
= 48 Ω .

Časťou potenciometra s odporom R − RX musí tak isto pretekať prúd I. Celkové napätie
v obvode je U a napätie v jeho rozvetvenej časti je UL, preto je podľa 2. Kirchhoffovho zákona
napätie na danej časti potenciometru U ′ = U−UL = 12 V. Podľa 1. Kirchhoffovho zákona ďalej
platí

U ′

R−RX
= UL

RL
+ UL

RX
,

a teda
R = RX + U ′

UL
RL

+ UL
RX

= ηU2

PL

(
1 + ηUL

UL − ηU

)
= 57,6 Ω .= 58 Ω .

U

RX

RL

R − RX

Obrázek 4: Schéma zapojenia lampy s potenciometrom.

Vladimír Slanina
vladimir.slanina@fykos.cz

Úloha FH . . . ledová bublina
David se díval kolmo na mýdlovou bublinu (pro jednoduchost uvažujte, že je tvořena pouze
vodou), která se mu díky interferenci jevila jako zelená λ0 = 550 nm. Protože byla venku ale
opravdu zima, bublina začala mrznout. S jakou vlnovou délkou uvidí David zamrzlou bublinu?
Uvažujte, že vnitřní průměr bubliny je po celou dobu 2r = 10,0 cm a že David pozoruje jenom
první interferenční řád. Index lomu ledu je nl = 1,31.

David si založil Instagram a našel video o zamrzající bublině.
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Nejprve určíme tloušťku bubliny z interference na tenké vrstvě. Chceme-li interferenční ma-
ximum, pak požadujeme, aby byl m-násobek (nazýváme řád interferenčního maxima) vlnové
délky roven optickému dráhovému rozdílu. Protože nás ale zajímá odraz, potřebujeme, aby to
byl poločíselný násobek λ0 kvůli změně fáze o π na odrazu. Obecně se může paprsek pohybovat
ve vrstvě pod nějakým úhlem θ. Pro konstruktivní interferenci pak platí

λ0

(
m+ 1

2

)
= 2dn cos θ ,

kde d je tloušťka vodní vrstvy, n její index lomu a θ je úhel paprsku od kolmice v místě, kde
David interferenci pozoruje. Protože se David dívá na bublinu kolmo, cos θ = 1 a vzorec se
redukuje na

λ0

(
m+ 1

2

)
= 2dn ⇒ d = λ0

2n

(
m+ 1

2

)
.

Nyní musíme určit, jak se změní tloušťka d tím, že voda změní skupenství. Pro objem kulové
slupky platí

V = 4
3π
[
(R3) − r3] ,

kde r je vnitřní poloměr a R je vnější poloměr. Dále musí platit zákon zachování hmotnosti

V ρ = Vlρl ,

4
3π
[
(r + d)3 − r3] ρ = 4

3π
[
(r + dl)3 − r3] ρl ,(

(r + d)3 − r3) ρ =
(
(r + dl)3 − r3) ρl ,(

3r2d+ 3rd2 + d3) ρ =
(
3r2dl + 3rd2

l + d3
l

)
ρl .

Ze zadání víme, že r = 5 cm, a tudíž využijeme aproximaci 3rd2 + d3 ≈ 0, protože d, dl ≪ r.
Zjednodušíme tedy rovnici na

3r2dρ = 3r2dlρl ⇒ dl = d
ρ

ρl
,

což dosadíme zpět do druhé rovnice a dostaneme

λ
(
ml + 1

2

)
= 2d ρ

ρl
nl .

Dále využijeme vztah d a λ0

λ
(
ml + 1

2

)
= 2λ0

2n

(
m+ 1

2

)
ρ

ρl
nl .

A využitím faktu, že David uvidí stejný interferenční řád m = ml = 1, dostaneme

λ = λ0
nl

n

ρ

ρl

.= 588 nm .

David Škrob
david.skrob@fykos.cz
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Úloha GA . . . protigravitační

α

γβ

Marek má dva kužely o výšce h a vrcholovém úhlu α slepené podstavami
k sobě. Umístí je horizontálně doprostřed mezi dvě dlouhá dřívka, která
spolu svírají úhel β a leží v rovině s úhlem sklonu γ. Obě dřívka mají
vzhledem k horizontální rovině stejný sklon. Marek překvapeně sleduje,
jak se body dotyku kuželů s dřívky pohybují nahoru. Jaký nejmenší může
být úhel α?

Marek považoval zákon gravitace za příliš přízemní.
Při posunu vzhůru se sice „zvedá celé těleso“, protože body dotyku kuželů a dřívek stoupají,
ale zároveň se body dotyku vzdalují od podstavy, čímž kužel, přesněji jeho těžiště, klesá. I když
body dotyku budou stoupat, těžiště musí ve výsledku klesat, tedy druhý efekt musí být silnější
než první. Protože hledáme krajní hodnotu, omezíme se na případ, kdy jsou efekty stejně silné.

Při vodorovném posunutí o vzdálenost x se body dotyku kužele s dřívky zvýší o hstoupání =
= x tg(γ). Zároveň se při takovém posunutí posune kužel v rovině dřívek o x sec(γ)4 a mezera
se proto rozšíří o 2x sec(γ) tg(β/2). Pokud u našeho tělesa zvětšíme mezeru mezi body dotyku
o r, klesne těžiště o r tg(α/2)/2, protože v mezním případě leží těžiště a body dotyku ve stejné
svislé rovině. Celkově se tedy při horizontálním posunutí o x sníží těžiště o

hpokles = x
tg
(

β
2

)
tg
(

α
2

)
cos(γ) .

Aby se kužely mohly hnout nahoru, musí v krajním případě platit
hstoupání = hpokles ,

tg α2 = sin(γ)
tg
(

β
2

) .
Pro úhel α pak musí platit

α = 2 arctg

(
sin(γ)
tg
(

β
2

)) .

Marek Milička
marek.milicka@fykos.cz

Úloha GB . . . neprůhledné sklo
Mějme sklo tloušťky d, které obsahuje tmavé barvivo, díky kterému pohlcuje část prošlého
světla. Uvažujme, že absorpční koeficient závisí lineárně na koncentraci barviva ve skle jako µ =
= αw, kde w je koncentrace. Máme-li sklo, ve kterém je vlivem výrobní chyby na povrchu
standardní koncentrace barviva, ale pak se lineárně zvyšuje o ∆w = βx, kde x je hloubka
měřená od povrchu, kolikrát méně světla projde? Petr přemýšlel, zda vůbec něco uvidí.
Víme, že nezávadné sklo má konstantní absorpční koeficient µ = αw. Můžeme tak využít empi-
rického Beer-Lambertova zákona, který nám říká, že intenzita světla při prostupu homogenním
materiálem klesá exponenciálně jako

I(x) = I0e−µx = I0e−αwx .

4Funkce sec(x) = 1/ cos(x).
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V případě nehomogenního materiálu (tedy proměnné koncentrace barviva v závadném skle)
k problému musíme přistoupit složitěji. Beer-Lambertův zákon si můžeme vyjádřit v diferenci-
ální podobě

dI(x) = −Iµ(x) dx ,

protože µ závisí lineárně na koncentraci, v našem případě máme

dI(x) = −I (αw + αβx) dx .

To je jednoduchá diferenciální rovnice, kterou můžeme vyřešit separací proměnných.

dI
I

= − (αw + αβx) dx ⇒ ln I = −
∫

(αw + αβx) dx

ln I = −
(
αwx+ αβ

2 x2
)

+ C

I = I0 exp
(

−
(
αwx+ αβ

2 x2
))

Označíme-li intenzitu prošlou celou nezávadnou destičkou jako I a intenzitu prošlou celou
závadnou destičkou jako I ′ (uvažujeme stejnou počáteční intenzitu), dostáváme pro jejich poměr

I

I ′ = exp
(
αβ

2 d2
)
.

Petr Sacher
petr.sacher@fykos.cz

Úloha GC . . . tak to změř
Pepa chtěl vždy žít jako 2D bytost na disku. Po dlouhém snažení se mu to konečně podařilo.
Na oslavu svého úspěchu se rozhodl, že si ve své ploše změří poloměr disku, na kterém žije,
pomocí 2D hliníkového pravítka.

Pepa má ale zákeřného kamaráda Vojtu, který mu jeho úspěch nepřál, a tak jeho svět
umístil na sporák tak, že od středu disku klesá jeho teplota exponenciálně s poloměrem podle
předpisu tvaru t(r) = tp +Ae−kr od tmax = 160 ◦C až do tmin = 60 ◦C na jeho okraji, kde tp =
= 20 ◦C označuje pokojovou teplotu.

O kolik procent bude poloměr měřený z pohledu Pepy menší než skutečný poloměr desky
měřený Vojtou? Uvažujte, že Vojta má dokonale pevné pravítko a Pepa má pravítko s konstantní
tepelnou roztažností α = 2,4 · 10−5 K−1, které správně měří délku při pokojové teplotě tp.

Pepa byl zoufalý.

Najprv si predstavme, že sa snažíme merať dĺžku na mieste s teplotou t hliníkovým pravítkom
s najmenším merateľným dielikom dĺžky x0. Ak by táto teplota bola rovná izbovej teplote tp,
tak by nám stačilo jednoducho spočítať počet elementárnych dielikov pravítka N , ktoré me-
raný úsek zaberá. Z toho by sme už vedeli určiť dĺžku meraného úseku ako Nx0. Avšak keď
je teplota daného miesta odlišná od izbovej teploty, tak sa celé pravítko a rovnako aj jeho
elementárny dielik predĺžia (respektíve skrátia) na (1 + α(t− tp))násobok pôvodnej dĺžky. Na-
miesto N elementárnych dielikov nám meraný úsek pokryje N/(1 + α(t − tp)) elementárnych
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dielikov. K tomuto počtu priradíme dĺžku Nx0/(1 + α(t − tp)) namiesto dĺžky Nx0, teda na-
meriame dĺžku (1 + α(t− tp))krát menšiu oproti skutočnej.

Vráťme sa teraz k situácii zo zadania. Meriame polomer disku, ktorého skutočný polomer
je R. Jeho teplota klesá exponenciálne s polomerom podľa predpisu t(r) = tp +Ae−kr z teplo-
ty tmax na teplotu tmin. Určme najprv z uvedených informácií hodnoty neznámych konštánt A
a k. Pre r = 0 má platiť t = tmax, takže po dosadení do predpisu pre teplotu dostávame

tmax = tp +A ,

odkiaľ vieme ľahko vyjadriť konštantu A ako A = tmax − tp.
Na okraji disku naopak máme r = R a t = tmin, takže

tmin = tp +Ae−kR .

Po dosadení A = tmax − tp a úpravách postupne dostávame

tmin − tp
tmax − tp

= e−kR ,

k = − 1
R

ln tmin − tp
tmax − tp

.

Závislosť teploty od polomeru sa tak upraví na

t(r) = tp + (tmax − tp)
(
tmin − tp
tmax − tp

)r/R

.

Predstavme si teraz meranie polomeru tohto disku od jeho stredu po okraj hliníkovým
pravítkom. Dĺžka elementárneho úseku polomeru so skutočnou dĺžkou dr, ktorú v tomto prípade
nameriame vo vzdialenosti r od stredu disku, bude

dr′ = dr

1 + α (tmax − tp)
(

tmin−tp
tmax−tp

)r/R
.

Polomer, ktorý nameria Pepa, potom bude

R′ =
∫ R

0

dr

1 + α (tmax − tp)
(

tmin−tp
tmax−tp

)r/R
.

Pre zjednodušenie spravíme substitúcie β = α (tmax − tp), B = (tmin−tp)/(tmax−tp) a x = r/R.
Po dodatočnom vyjadrení dr = R dx prejde tento integrál do tvaru

R′ = R

∫ 1

0

1
1 + βBx

dx .

Keď si teraz trikovo rozpíšeme jednotku v čitateli ako 1+βBx −βBx, tak sa tento výraz upraví
na

R′ = R

∫ 1

0

(
1 − βBx

1 + βBx

)
dx = R−R

∫ 1

0

βBx

1 + βBx
.
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Po substitúcii u = 1 + βBx, z ktorej vieme vyjadriť du = βBx lnB dx, nám potom člen βBx

v čitateli vypadne a dostaneme jednoducho

R′ = R− R

lnB

∫ 1+βB

1+β

du
u

= R− R

lnB ln 1 + βB

1 + β
.

Pepa oproti Vojtovi nameria polomer menší o

R−R′

R
= ln 1 + α (tmin − tp)

1 + α (tmax − tp)/ln
tmin − tp
tmax − tp

.= 0,19 % .

Tomáš Kubrický
tomas.kubricky@fykos.cz

Úloha GD . . . převracíme kvádr

c
a

b

Uvažme dutý kvádr s podstavou o stranách a = 50,0 cm a c =
= 30,0 cm a s výškou b = 30,0 cm. Stěny kvádru mají zanedba-
telnou hmotnost, ale celý jeho objem je naplněn vodou a ku-
latou bójkou o poloměru r = 8,00 cm zhotovenou z materiálu
o hustotě ρ0 = 350 kg·m−3. Bójka je pomocí nehmotného a bez-
objemného provázku délky l = a/2 − 2r uchycena uprostřed
podstavy kvádru. Jakou práci musíme vynaložit na převrácení
kvádru okolo hrany c? Uvažujte, že převracení provádíme velmi
pomalu.

Petrův kvádr udělal bum bác.

Nejprve si vhodně zvolíme naši soustavu souřadnic. Ukáže se výhodným, pokud si ji zvolíme
tak, že počátek bude ležet uvnitř hrany, okolo které kvádr otáčíme, osy x a y budou postupně
v horizontálním a vertikálním směru; kladný směr osy x bude směrem ke kvádru. Úlohu nám
stačí řešit dvourozměrně, proto osu z neřešíme. Nyní určíme souřadnice těžiště. Obecně, pro j-
tou souřadnici těžiště systému platí

tj =
∑

i
mixij∑
i
mi

,

kde mi jsou hmotnosti těles, ze kterých se systém skládá a xij je j-tá souřadnice těžiště i-
tého tělesa. Jinak řečeno, těžiště je vážený průměr souřadnic těžiští dílčích těles, kde váhy jsou
hmotnosti těchto těles. Pro x-ovou a y-ovou souřadnici těžiště našeho systému tak platí

tx =
1
2a

2bcρ− 2
3πr

3a (ρ− ρ0)
abcρ− 4

3πr
3 (ρ− ρ0)

,

ty =
1
2ab

2cρ− 4
3πr

3 (a
2 − r

)
(ρ− ρ0)

abcρ− 4
3πr

3 (ρ− ρ0)
.

Neznáme, kde přesně se nachází těžiště vody v kvádru a tak jsme využili následující trik – uvážili
jsme kvádr naplněný vodou bez bójky, který má těžiště (jak bychom očekávali) uprostřed kvádru

52

mailto:tomas.kubricky@fykos.cz


Fyziklání 2026 20. ročník 13. února 2026

a k němu jsme přičetli těleso stejného tvaru a polohy jako má bójka s (ryze formálně) zápornou
hustotou −ρ. K tomu pak stačilo připočíst skutečnou bójku s hustotou ρ0.

Představme si nyní kvádr poté, co ho začneme naklápět. V něm bude díky vztlakové síle
bójka vždy napnutá směrem nahoru. Parametrizujme si všechny polohy úhlem náklonu kvádru
oproti podložce φ. S trochou geometrie dostaneme pro polohu těžiště v této konfiguraci

t′x =
1
2 (a cosφ− b sinφ) abcρ− 2

3πr
3a cosφ (ρ− ρ0)

abcρ− 4
3πr

3 (ρ− ρ0)
,

t′y =
1
2 (a sinφ+ b cosφ) abcρ− 4

3πr
3 (a

2 + a
2 sinφ− r

)
(ρ− ρ0)

abcρ− 4
3πr

3 (ρ− ρ0)
.

Nyní určíme mezní úhel φM. Můžeme ho určit dvěma způsoby, buď pomocí derivace t′y podle φ
nebo z podmínky t′x = 0. V obou případech dostaneme

φM = arctg
(
a

b
− 4

3πr
3 1
b2c

(
1 − ρ0

ρ

))
.= 58,2◦ .

Pro práci pak máme

W = ∆E = g
(
abcρ− 4

3πr
3 (ρ− ρ0)

)(
t′y (φM) − ty

)
,

což lze dále upravit na

W = aρg

2

(√(
abc− 4

3πr
3
(
1 − ρ0

ρ

))2 + (b2c)2 − b2c

)
.= 59,5 J .

Petr Sacher
petr.sacher@fykos.cz

Úloha GE . . . síťová
Uvažujme tzv. multimode optický kabel, ve kterém jako zdroj světla, od kterého se šíří infor-
mace, slouží LED dioda. Ta se nachází ve středu trubice o průměru D = 62,5 μm a s indexem
lomu n = 1,48 a svítí izotropně (do všech směrů stejně). Pro jednoduchost předpokládejte, že
se kolem trubice nachází vzduch a celá optická linka je dlouhá l = 1,00 km. Vypočítejte střední
hodnotu časů, za které přijdou paprsky vyslané v tom samém okamžiku na konec kabelu. Uva-
žujte jenom paprsky, které dorazí do cíle. Vlado se na přednášce z počítačových
sítí zamýšlel nad tím, proč se multimode kabely používají jen na poměrně krátké vzdálenosti.

Uvažujme jeden lúč, ktorý LED dióda vyžiarila pod uhlom φ voči osi kábla. Odvoďme najprv
podmienku, aby lúč na hranici kábla nevyšiel z kábla von, ale iba sa odrazil. Pri dopade na
rozhranie bude tento lúč zvierať s kolmicou uhol π/2 −φ. Z toho dôvodu, aby došlo k úplnému
odrazu, musí platiť

n sin
(
π
2 − φ

)
= n cosφ > n0 sin π2 ≈ 1 ,
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kde sme využili goniometrickú identitu sin(π/2 − x) = cosx a tiež index lomu vzduchu n0 ≈ 1.
Po úprave a uvážení toho, že funkcia kosínus je na intervale ⟨0, π/2⟩ klesajúca, dostávame pre
uhol φ podmienku

φ < arccos
( 1
n

)
= φm

.= 47,5◦ (4)

Lúče vyžiarené pod väčším uhlom φm sa síce tiež do istej miery budú odrážať, avšak ich in-
tenzita sa pri každom odraze zníži, a tak vo výsledku bude ich vplyv na signál prijatý na druhom
konci kábla pri veľkej vzdialenosti zanedbateľný, preto s nimi vo zvyšku riešenia nepočítame.

Pri splnení podmienky (4) bude lúč po každom odraze zvierať s osou kábla stále uhol φ.
Vďaka tomu dôjde k úplnému odrazu aj pri ďalších odrazoch, keďže lúč bude s rozhraním kábla
a vzduchu zvierať stále ten istý uhol. Informácia sa v kábli s indexom lomu n bude pritom
šíriť rýchlosťou v = c/n. Keďže uvedený lúč neustále zviera uhol φ s osou kábla, tak namiesto
dĺžky kábla l musí prejsť v skutočnosti vzdialenosť x = l/ cosφ. Potom na druhý koniec kábla
informácia dôjde za čas

t(φ) = x

v
= nl

c cosφ .

Pre určenie strednej hodnoty tohto času potrebujeme ešte určiť, aká časť všetkých lúčov
spĺňajúcich podmienku (4) bude vyžiarená v nejakom malom intervale uhlov ⟨φ,φ+ dφ). Keď
si predstavíme pomyselnú sféru s polomerom R so stredom v LED dióde, na ktorej povrch budú
dopadať rovnomerne vyžiarené lúče z LED diódy, tak nám vlastne stačí určiť pomer obsahu časti
sféry zodpovedajúcej tomuto intervalu a obsahu časti sféry zodpovedajúcej celému prípustnému
intervalu uhlov ⟨0, φm). Časť sféry zodpovedajúcu malému intervalu uhlov ⟨φ,φ+ dφ) tvorí
tenké medzikružie s vnútorným polomerom R sinφ a hrúbkou R dφ, takže s obsahom

dS = 2πR sinφ ·R dφ = 2πR2 sinφdφ .

Obsah časti sféry zodpovedajúcej celému prípustnému intervalu uhlov ⟨0, φm) určíme teraz ako

S =
∫ φm

0
2πR2 sinφdφ = 2πR2 (1 − cosφm)

Podiel lúčov, ktoré spadajú do malého intervalu uhlov ⟨φ,φ+ dφ), je teda

dS
S

= sinφ dφ
1 − cosφm

.

Teraz môžeme vyjadriť strednú hodnotu času t. Ak by sme mali len konečný počet prí-
pustných uhlov φ, stredná hodnota času t by bola vážený priemer časov t(φ) prislúchajúcich
jednotlivým prípustným uhlom φ, kde váhami by boli podiely počtu lúčov vyžiarených pod
danými uhlami. V spojitom prípade platí podobný vzťah, akurát namiesto sumy vo váženom
priemere potrebujeme použiť integrál. Zároveň musíme podiel lúčov vzťahovať nie k jednej kon-
krétnej hodnote φ, ale k nejakému malému intervalu uhlov ⟨φ,φ+ dφ) tak, ako sme to vyššie
robili. Stredná hodnota času t tak v našom prípade bude

⟨t⟩ =
∫ φm

0

nl

c cosφ
sinφ dφ

1 − cosφm
= nl

c (1 − cosφm)

∫ φm

0

sinφ
cosφ dφ .
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Pre dopočítanie integrálu tangensu sa oplatí spraviť substitúciu u = cosφ, keďže potom nám
po vyjadrení dφ = − du/ sinφ sínus z integrálu vypadne. Vzťah pre strednú hodnotu sa upraví
na

⟨t⟩ = −nl
c (1 − cosφm)

∫ cos φm

1

1
u

du = −nl
c (1 − cosφm) ln (cosφm) = n2l

c(n− 1) ln(n) .= 5,97 μs .

Tomáš Kubrický
tomas.kubricky@fykos.cz

Úloha GF . . . nerozlišitelné plyny
Ve vakuové komoře se za nízkého tlaku nachází směs dvou plynů – dusíku a oxidu uhelnatého,
přičemž část z nich je ionizovaná. V hmotnostním spektrometru můžeme určovat plyny podle
poměru jejich náboje a hmotnosti. Relativní molekulová hmotnost obou plynů je ale velmi
podobná, přibližně M = 28, a náš spektrometr nemá dostatečné rozlišení na to, aby je rozlišil.
Část částic je ale ionizovaná dvakrát, což se projeví jako signál na pozici M = 14. Účinný průřez
dvojnásobné ionizace ku jednonásobné je pro CO v poměru 0,015 ku 1, u N2 je to 0,090 ku 1.
Poměr účinného průřezu první ionizace N2 ku CO je pak 0,83. Koncentraci obou plynů bychom
rádi určili z intenzity detekovaného signálu na daných pozicích. Ta se měří jako zesílený proud
iontů, které dopadnou na detektor. Na pozici s molekulovou hmotností 28 je I28 = 210 μA,
na pozici 14 je pak I14 = 10,5 μA. Určete poměr koncentrace oxidu uhelnatého ku dusíku.
Neuvažujte jejich vzájemné interakce. Dneska na přednášce, dneska na výběru.

Ve hmotnostním spektrometru jsou jednotlivé částice ionizovány, aby mohla být působením
elektrických a magnetických polí ovlivněna jejich dráha tak, abychom jednotlivé částice dokázali
rozlišit. Na nabité částice totiž působí Lorentzova síla

F = ma = e (E + v × B) ,

kde E je vektor elektrické intenzity a B vektor magnetické indukce. Zrychlení, a tedy i následná
trajektorie, tak na polích závisí s konstantou úměrnosti e/m. Pokud tedy nabijeme částice na
stejný náboj, jejich trajektorie jsou ovlivněné jejich hmotností. Proto je můžeme separovat na
základě poměru m/e. Dvakrát ionizované částice se pak ve spektru jeví jako částice s poloviční
hmotností.

Podle zadání tedy ve spektru vidíme, že detekujeme za jednotku času nějaký počet částic
s hmotností 28, a jiný počet na pozici 14, což odpovídá dvojnásobné ionizaci těchto molekul.
Označme parciální tlak dusíku pN2

a parciální tlak oxidu uhelnatého pCO a účinné průřezy
první ionizace pro dusík σ1,N2

a σ1,CO stejnou veličinu pro oxid uhelnatý. Pak intenzitu signálu
na pozici 28 můžeme vyjádřit jako

I28 = k
(
σ1,N2

pN2
+ σ1,COpCO

)
,

kde k je konstanta úměrnost mezi počtem detekovaných iontů a celkovým počtem iontů. In-
tenzita je v našem případě rovna proudu, protože měříme počet detekovaných nabitých částic,
tedy vlastně prošlý náboj. Podobně pak můžeme vyjádřit intenzitu na pozici 14 jako

I14 = 2k
(
σ2,N2

pN2
+ σ2,COpCO

)
,
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kde číslice 2 před celou závorkou vyjadřuje, že jeden iont nyní nese dvojnásobný náboj.
První rovnici vydělíme druhou a upravujeme

I28

I14
= 1

2
σ1,N2

pN2
+ σ1,COpCO

σ2,N2
pN2

+ σ2,COpCO
,

2I28

I14
=
σ1,N2

+ σ1,CO
pCO
pN2

σ2,N2
+ σ2,CO

pCO
pN2

,

2I28

I14
σ2,CO

pCO

pN2

− σ1,CO
pCO

pN2

= σ1,N2
− 2I28

I14
σ2,N2

,

pCO

pN2

=
σ1,N2

− 2I28
I14

σ2,N2

2 I28
I14
σ2,CO − σ1,CO

,

pCO

pN2

=
σ1,N2

σ1,CO

1 − 2I28
I14

σ2,N2
σ1,N2

2 I28
I14

σ2,CO
σ1,CO

− 1
.

Nyní už nám stačí jen dosadit za poměry uvedené v zadání a dostáváme

pCO

pN2

= 0,83
2I28
I14

0,09 − 1
1 − 2 I28

I14
0,015

.= 5,4 .

Oxidu uhelnatého je tedy v této atmosféře výrazně více než dusíku.

Jaroslav Herman
jardah@fykos.cz

Úloha GG . . . odpudivé světlo
Určitě se vám už stalo, že jste vyšli z málo osvětlené budovy a najednou vás oslepilo Slunce.
Vypočítejte, jakou silou působí Slunce na Zemi svým zářením. Předpokládejte, že je zemský
povrch tvořený pouze vodou, což znamená, že se zlomek α = 0,31 veškerého dopadajícího záření
perfektně odrazí od povrchu a zbytek je pohlcen.

Vlado vyšel ze školy a rovnou se otočil zpátky.

Riešením úlohy je súčet dvoch efektov – v prvom uvažujeme, že sa 1−α fotónov pohltí, a v dru-
hom, že sa α fotónov od Zeme odrazí ako od zrkadla.

Keďže je Zem rotačne symetrická okolo osi danej spojnicou Slnko-Zem, tak si môžeme úlohu
parametrizovať uhlom φ, ktorý zviera spojnica stredu Zeme a bodu na jeho povrchu so spojnicou
Slnko-Zem. Tieto body majú tú vlastnosť, že na dané miesta na Zemi svieti Slnko pod rovnakým
uhlom, a to φ od kolmice na povrch. Body na povrchu gule, ktoré sa nachádzajú medzi uhlami φ
a φ+ dφ vytínajú na povrchu Zeme plochu dA = 2πR⊕ sinφ ·R⊕ dφ.

Interakciu fotónov a Zeme vieme modelovať ako zrážky. V prvom prípade je 1 − α fotónov
neelasticky pohltených Zemou, teda ich hybnosť sa zmení o ∆p1 = 0 − p = −p. V druhom
prípade dôjde k elastickej zrážke podľa zákonu odrazu, pri ktorej sa zmení len zložka hybnos-
ti p⊥, ktorá je kolmá na povrch v mieste odrazu. Hybnosť α fotónov sa tým pádom zmení
o ∆p2 =

(
p∥ − p⊥

)
−
(
p∥ + p⊥

)
= −2p⊥.
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Následne si vyjadríme hybnosť fotónov cez výkon P , ktorým žiari Slnko na Zem vo vzdia-
lenosti Zeme. Pre hybnosť N fotónov, ktoré na Zem dopadnú za čas ∆t a s vlnovou dĺžkou λ,
platí

p = N
h

λ
= N

h
hc
E

= NE

c
= P∆t

c
,

kde sme pri úpravách využili vzťah pre energiu fotónu E = hc
λ

.
Silu, ktorou pôsobí žiarenie na Zem, vypočítame podľa 2. Newtonovho zákonu

F = ∆p

∆t = −
(

(1 − α)∆p1

∆t + α
∆p2

∆t

)
.

Znamienko mínus je vo vzťahu použité kvôli tomu, že podľa zákonu zachovania hybnosti je
zmena hybnosti Zeme v opačnom smere ako zmena hybnosti fotónov. Dôsledkom toho je Zem
žiarením „odtláčaná“ od Slnka.

Kvôli symetrii situácie bude sila pôsobiť v smere spojnice Slnko-Zem, ktorý budeme ďalej
nazývať „rovnobežný smer“. Vzhľadom na výsledný smer sily F budeme uvažovať len zmenu
hybnosti v rovnobežnom smere (F∥). V skutočnosti sa nám ale oplatí zaviesť si namiesto sily
tlak slnečného žiarenia

P = F

A
= 1
A

∆p
∆t = P

A

1
c

=: I
c
,

kde I je výkon, ktorý ma žiarenie vo vzdialenosti Zeme od Slnka, na jednotku plochy oriento-
vanej kolmo na tieto lúče.

Pozrime sa na prvý prípad, v ktorom sú všetky slnečné lúče pohltené. Keďže fotóny smerujú
v rovnobežnom smere, tak v rovnakom smere bude aj ich zmena hybnosti ∆p1 = p. Tlak P
v tomto prípade vyjadruje, že na element plochy dAeff, ktorý je kolmý na lúče, pôsobí element
sily dF∥. Element plochy dA s lúčmi zviera uhol φ, preto dAeff získame tak, že dA premietneme
do smeru kolmého na lúče a dostaneme

dAeff = dA cosφ = 2πR2 sinφ cosφ dφ .

Výsledná sila pôsobiaca na Zem v rovnobežnom smere je potom

F1∥ =
∫

polguľa
P dAeff = P · 2πR2

⊕

∫ π/2

0
sinφ cosφ dφ = 2πPR2

⊕

∫ π/2

0

sin(2φ)
2 dφ

= 2πPR2
⊕ · 1

2 = P · πR2
⊕ .

Dostali sme známy výsledok, a to, že ak na guľu svietia rovnobežné lúče, tak potom je efektívna
plocha Zeme v kolmom smere πR2

⊕.
Rozoberme teraz druhý, komplikovanejší prípad. Ako sme už v úvode naznačili, zmena

hybnosti ∆p2 je kolmá na povrch, čiže bude smerovať v radiálnom smere zo stredu Zeme
v danom mieste odrazu (situácia je analogická ku dopadu lúčov na rovinu pod uhlom φ od
kolmice). Veľkosť ∆p2 je rovná dvojnásobku kolmej hybnosti na povrch, teda ∆p2 = 2p⊥ =
= 2p cosφ. Z ∆p2 nás ale zaujíma iba rovnobežná zložka rýchlosti so spojnicou Slnko-Zem,
teda

∆p2∥ = ∆p2 cosφ = 2p cos2 φ = p (1 + cos (2φ)) .
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Analogicky k prvému prípadu však musíme rátať ešte s efektívnou plochou dAeff namiesto
celkovej plochy dA. Výsledná sila potom je

F2∥ =
∫

polguľa
P (1 + cos (2φ)) dAeff = P · 2πR2

⊕

∫ π/2

0
(sinφ cosφ+ sinφ cosφ cos(2φ)) dφ

= 2πPR2
⊕

(∫ π/2

0

sin(2φ)
2 dφ+

∫ π/2

0

sin(4φ)
4 dφ

)
= 2PπR2

⊕ ·
(1

2 + 0
)

= P · πR2
⊕ .

Dostali sme prekvapivý výsledok – efektívny povrch pri úplnom odraze je rovnaký ako pre
úplne pohltenie! Z toho vyplýva, že v skutočnosti výsledná sila pôsobiaca na Zem nie je vôbec
závislá od percenta odrazených fotónov (parametru α).

V tomto momente nám ostáva už len určiť hodnotu intenzity I. Slnko vyžaruje s výko-
nom L⊙. Toto svetlo sa šíri od Slnka do všetkých smerov rovnako, teda vo vzdialenosti r = 1 au
pripadá na jednotku plochy výkon

I = L⊙

4πr2 .

Napokon dostávame

F∥ = (1 − α)F1∥ + αF2∥ = I

c
πR2

⊕ = L⊙

4c
R2

⊕

r2
.= 5,8 · 108 N .

Táto sila je výrazne menšia ako gravitačná sila, ktorou pôsobí Slnko na Zem, s veľkosťou ∼
∼ 3,5 · 1022 N.

Vladimír Slanina
vladimir.slanina@fykos.cz

Úloha GH . . . nabitý prstenec
Kubo se snažil vytvořit past pro nabité částice. Vzal si k tomu tenký homogenně elektricky
nabitý prstenec o poloměru R = 1,0 cm a délkové nábojové hustotě λ = 9,0 · 10−6 C·m−1.
Následně do jeho středu vložil nabitou částici s měrným nábojem q/m = 5,2 · 108 C·kg−1. Ve
směru kolmém na rovinu prstence šlo bohužel jenom o labilní rovnovážnou polohu, proto částici
ze středu mírně vychýlil jen v této rovině. Určete periodu počátečního pohybu částice kolem
středu prstence. Kubo chtěl analyticky spočítat integrál z úlohy „Faradayův kolektor“.

x

r
R

ψϕ

Na určenie periódy malých kmitov musíme najprv spočítať
výslednú silu pôsobiacu na nabitú časticu od nabitého prsten-
ca. Ten bude pôsobiť iba coulombicky, ale z každého svojho
bodu. Označme si výchylku nabitej častice od stredu prstenca
ako x a vzdialenosť nejakého elementu prstenca (v smere ψ
od častice) ako r. Tú vieme spočítať pomocou kosínusovej ve-
ty ako r2 = R2 +x2 −2Rx cosφ, kde φ je súradnica elementu
na prstenci vzhľadom na jeho stred. Tento uhol vieme určiť
pomocou sínusovej vety pre strany R a x.

R

sin(π− ψ) = x

sin(ψ − φ) ⇒ φ = ψ − arcsin
(
x

R
sinψ

)
,
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cosφ = cos(ψ) cos
(

arcsin
(
x

R
sinψ

))
+ sin(ψ) x

R
sinψ =

√
1 − x2

R2 sin2 ψ cosψ + x

R
sin2 ψ .

Dosadením do kosínusovej vety dostávame vzdialenosť r ako funkciu uhla ψ, pričom pre malé
hodnoty x môžeme výraz upraviť zanedbaním členov rádu O(x2).

r2 = R2 + x2 − 2Rx

√
1 − x2

R2 sin2 ψ cosψ − 2x2 sin2 ψ ≈ R2 − 2Rx cosψ .

Ďalej ešte potrebujeme vyjadriť dĺžku elementu prstenca dl z diferenciálu dψ. Tú spočítame
opäť pomocou kosínusovej vety.

x

r

dl

r+
dr

ψ
dψ

dl2 = r2 +
(
r + dr

dψ dψ
)2

− 2r
(
r + dr

dψ dψ
)

cos dψ =
(

dr
dψ dψ

)2

+ r2 dψ2 + O
(
dψ3)

dl =

√
r2 +

(
dr
dψ

)2

dψ =
√
r2 + O(x2) dψ ≈ r dψ

Derivácia funkcie r(ψ) je rádu O(x), jej druhá mocnina sa bude preto správať aspoň ako O(x2),
takže ju môžeme zanedbať v porovnaní s hodnotou r2.

Teraz nám už nič nebráni v tom spočítať celkové elektrické pole pôsobiace na nabitú časticu.
To by sme štandardne mohli počítať vektorovo, tu si ale môžeme uvedomiť osovú symetriu nášho
problému a obmedziť sa na zložku intenzity v smere výchylky x. Do výrazu preto pridáme
prefaktor cosψ.

|E| = 1
4πε0

∮
λ cosψ
r2 dl ≈ λ

2πε0

∫ π

0

cosψ
r

dψ ≈ λ

2πε0

∫ π

0

cosψ
R

(
1 + x

R
cosψ

)
dψ =

= λx

2πR2ε0

∫ π

0
cos2 ψ dψ = λx

2πR2ε0

∫ π

0

1 + cos(2ψ)
2 dψ = λx

2πR2ε0

[
ψ

2

]π
0

= λx

4R2ε0
.

Pri výpočte sme využili aproximáciu r−1 ≈ R−1 (1 + (x/R) cosψ) vyplývajúcu z rozvoja r(x)
vyhovujúcu pre malé x. Pri samotnom vyčíslovaní výsledného integrálu sme zase využili fakt,
že integrál z kosínusu od 0 do π aj od 0 do 2π je nulový.
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Nakoniec nám zostáva si už len napísať pohybovú rovnicu nabitej častice s nábojom q
a hmotnosťou m, identifikovať v nej rovnicu harmonického oscilátora a z nej určiť periódu
malých kmitov.

ma = − qλx

4R2ε0
= −mω2x ⇒ ω2 = qλ

4mR2ε0
,

T = 2π
ω

= 4πR
√
mε0

qλ

.= 5,47 · 10−9 s .

Hľadaná perióda malých kmitov nabitej častice je približne T .= 5,5 ns.

Jakub Kliment
jakub.kliment@fykos.cz

Úloha HA . . . tření na nakloněné rovině
Máme hmotný bod na nakloněné rovině s proměnným sklonem v homogenním tíhovém poli.
Úhel α mezi rovinou a vodorovným povrchem budeme pomalu zvětšovat do hodnoty α1, při
které se hmotný bod začne pohybovat. Následně úhel α zmenšujeme úhlovou rychlostí ω =
= 1 ◦·s−1 tak, že osa otáčení roviny prochází hmotným bodem. Jakou vzdálenost po nakloněné
rovině urazí hmotný bod mezi dvěma stacionárními polohami? Koeficient statického tření je fs =
= 0,65 a koeficient dynamického tření fd = 0,51. Dávid si zapsal bakalářské repetitorium.
Úlohu vieme riešiť v dvoch rozmeroch, a tak si súradnicovú sústavu zavedieme tak, že os x bude
rovnobežná s naklonenou rovinou a os y na ňu kolmá. Rozkladom pôsobiacich síl do týchto dvoch
smerov získame nasledujúcu sústavu rovníc

x : T + G = ma ⇒ mg sinα− T = ma ,

y : N + G = 0 ⇒ mg cosα−N = 0 ,

kde T označuje treciu silu, G tiažovú silu, N normálovú silu pôsobiacu na hmotný bod od
podložky, m jeho hmotnosť, g tiažové zrýchlenie a napokon a označuje výsledné zrýchlenie,
s ktorým sa bude bod pohybovať.

V čase t = 0 je uhol α práve taký, že sa sily v x-ovom smere rovnajú, z čoho získame rovnicu
na výpočet uhla α1

mg sin(α1) = fsmg cos(α1) ⇒ α1 = arctg(fs) .

Vieme, že hneď ako sa hmotný bod začne pohybovať, tak sa začne meniť aj uhol α kon-
štantnou rýchlosťou ω. Platí teda α(t) = α(0) − ωt = α1 − ωt. Vo všeobecnom čase t, kedy
sa hmotný bod pohybuje, potom dostaneme z druhého Newtonovho zákona

mg sinα(t) − fdmg cosα(t) = ma ⇒ a = g(sin(α1 − ωt) − fd cos(α1 − ωt)) .

Zintegrovaním poslednej rovnice podľa času dostaneme závislosť v(t)

v(t) = g

ω

(
cos(α1 − ωt) + fd sin(α1 − ωt)

)
+ C1 .

Použitím podmienky, že v čase t = 0 je rýchlosť nulová, sa zbavíme integračnej konštanty C1
a dostaneme

v(t) = g

ω

(
cos(α1 − ωt) − cos(α1) + fd(sin(α1 − ωt) − sin(α1))

)
.
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Z tejto rovnice vieme teraz už vypočítať čas tmax, v ktorom sa hmotný bod znova zastaví,
t.j. kedy bude platiť v(tmax) = 0. Na osamostatnenie času t v rovnici najprv využijeme súčtové
vzorce pre goniometrické funkcie sin(α1−ωt) = sin(α1) cos(ωt)−cos(α1) sin(ωt) a cos(α1−ωt) =
= cos(α1) cos(ωt) + sin(α1) sin(ωt). Dosadením a úpravou predchádzajúcej rovnice tak dostá-
vame

v(t) = g

ω

(
(cos(α1) + fd sin(α1)) (cos(ωt) − 1) + (sin(α1) − fd cos(α1)) sin(ωt)

)
= 0 ,

(cos(α1) + fd sin(α1)) (1 − cos(ωt)) = (sin(α1) − fd cos(α1)) sin(ωt) ,

tg
(
ωt

2

)
= 1 − cos(ωt)

sin(ωt) = sin(α1) − fd cos(α1)
cos(α1) + fd sin(α1) ,

ωt

2 = arctg
(

sin(α1) − fd cos(α1)
cos(α1) + fd sin(α1)

)
= arctg

(
fs − fd

1 + fdfs

)
,

tmax = 2
ω

arctg
(
fs − fd

1 + fdfs

)
.= 12,0 s .

Okrem vzťahu pre tangens polovičného argumentu sme využili aj vyjadrenie sínusu uhla α1

ako fs/
√

1 + f2
s a jeho kosínusu ako 1/

√
1 + f2

s , ktoré vyplývajú zo vzťahu α1 = arctg(fs).
Keď už máme vyjadrený čas tmax, môžeme pristúpiť k poslednému kroku – nájdeniu po-

lohy x(tmax), ktorá zodpovedá vzdialenosti, ktorú prešiel hmotný bod po podložke. Podobne
ako sme našli závislosť v(t) integráciou a(t), tak teraz opätovnou integráciou v(t) vyjadríme x(t).
Vyjde nám

x(t) = g

ω2

(
sin(α1) − sin(α1 − ωt) − ωt cos(α1) + fd(cos(α1 − ωt) − cos(α1) − ωt sin(α1))

)
,

kde sme integračnú konštantu určili z podmienky x(0) = 0. Opäť využijeme súčtové vzorce pre
sínus a kosínus a danú závislosť upravíme do tvaru

x(t) = g

ω2

(
(fd cos(α1) − sin(α1)) (cos(ωt) − 1) + (fd sin(α1) + cos(α1)) (sin(ωt) − ωt)

)
,

ktorý je opäť analogický predpisu v(t). Teraz nám zostáva už len dosadiť čas tmax a výsledok
upraviť do finálneho tvaru. Pri úpravách použijeme identity

sin(2 arctg y) = 2y
1 + y2 a cos(2 arctg y) = 1 − y2

1 + y2 .

Dostávame tak

x(tmax) = 2g
ω2

(
fs − fd√

1 + f2
s

− 1 + fdfs√
1 + f2

s
arctg

(
fs − fd

1 + fdfs

))
.= 27,7 m ,

kde sme za uhlovú rýchlosť dosadili ω = π/180 rad·s−1 .= 1,745 · 10−2 rad·s−1.

Jakub Kliment
jakub.kliment@fykos.cz

Dávid Brodňanský
david.brodnansky@fykos.cz
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Úloha HB . . . dramatické zesílení
Do homogenního elektrického pole o intenzitě E = 333 V·m−1 umístíme vodivou nenabitou
kouli o poloměru R = 7,5 cm. Určete, jaká bude v oblasti největší velikost elektrické intenzity.

Jarda si všimnul, že když sedí u rádia, tak lépe hraje.

Vložíme-li do elektrického pole vodivou kouli, náboje se na ni přeskupí tak, že kulová slupka
bude ekvipotenciální plochou. Na nalezení pole ovšem využijeme následující trik.

Uvažujme, že do elektrického pole vložíme elektrický dipól o hodnotě p, orientovaný ve
směru osy z, kam také míří pole. Hodnota potenciálu elektrického dipólu je

φdip = 1
4πε

p · r
r3 = 1

4πε
pz

r3 ,

kde p je velikost dipólu a r je polohový vektor z počátku ve středu dipólu. Celkový potenciál je

φtot = φdip − Ez =
( 1

4πε
p

r3 − E
)
z .

Můžeme si všimnout, že pro jistou vzdálenost R, pro kterou platí p = 4πεER3, je potenciál
nulový nezávislé na hodnotě z. Kolem dipólu v homogenním elektrickém poli tedy existuje ekvi-
potenciální plocha tvaru kulové sféry. Kdybychom na tuto plochu umístili opravdovou vodivou
kulovou sféru, nic by se nestalo, protože plocha je to ekvipotenciální. Pokud v tento okamžik
dipól uvnitř vodivé sféry odebereme, přeskupí se na sféře tak, aby byla opět ekvipotenciální.
Situace mimo kouli se ovšem nezmění, protože siločáry pole musí být stále kolmé ke kulové sféře.
Lze ukázat, že existuje právě jedno řešení takového problému – a my jsme jej našli. Umístění
vodivé sféry do homogenního elektrického pole je (mimo kouli) ekvivalentní umístění dipólu
o vhodné velikosti na místo středu koule.

Ze zadání máme poloměr koule jako R, proto je vhodná velikost dipólu p = 4πεER3. Takový
dipól kolem sebe vyvolá elektrické pole o intenzitě

Edip = 1
4πε

(
3p · r
r5 r − p

r3

)
= ER3

(
3z · r
zr5 r − z

zr3

)
,

kde jsme zavedli jednotkový vektor ve směru osy z jako z/z, přičemž platí p = p · z/z. Celková
intenzita elektrického pole je

Etot = Edip + E = ER3

zr3

(
3z

2

r2 r +
(
r3

R3 − 1
)
z

)
.

Hledáme největší velikost elektrické intenzity, což je ekvivalentní s tím hledat největší kvadrát
elektrické intenzity a na konci jej pouze odmocnit. Ten tedy najdeme jako

E2
tot = Etot · Etot =

(
ER3

zr3

)2
(

9z
4

r4 r
2 +
(
r3

R3 − 1
)2

z2 + 6z
2

r2

(
r3

R3 − 1
)
z2

)
=

=
(
ER3)2

(
3z

2

r8 + 1
R6 − 2

R3r3 + 1
r6 + 6 z2

r5R3

)
.

Uvažujme nyní sféru s poloměrem r > R. Na každé takové sféře je velikost intenzity maximální
v místech, kde je maximální z, tedy pro z = r. Dosazením z = r tak dostáváme

E2
tot =

(
ER3)2

( 4
z6 + 1

R6 + 4
z3R3

)
.

62



Fyziklání 2026 20. ročník 13. února 2026

Tato funkce rychle klesá se z. Je proto evidentní, že nejvyšší hodnota velikosti intenzity elektric-
kého pole bude těsně u koule, tedy ve vzdálenosti z = R. Dosazením a odmocněním předchozího
vztahu dostaneme výsledek

Emax = 3E = 999 V·m−1 ,

který nezávisí na poloměru koule ani na ničem jiném.

Jaroslav Herman
jardah@fykos.cz

FYKOS
UK, Matematicko-fyzikální fakulta
Ústav teoretické fyziky
V Holešovičkách 2
180 00 Praha 8

www: https://fykos.cz
e-mail: fykos@fykos.cz

/FYKOS @fykosak

Fyzikální korespondenční seminář je organizován studenty MFF UK. Je zastřešen Oddělením
propagace a mediální komunikace MFF UK a podporován Ústavem teoretické fyziky

MFF UK, jeho zaměstnanci a Jednotou českých matematiků a fyziků. Realizace projektu byla
podpořena Ministerstvem školství, mládeže a tělovýchovy.

Toto dílo je šířeno pod licencí Creative Commons Attribution-Share Alike 3.0 Unported.
Pro zobrazení kopie této licence navštivte https://creativecommons.org/licenses/by-sa/3.0/.
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