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Uloha AA ... letni drink

Méjme valcovou sklenicku s vnitfnim polomérem R = 3,0 cm a s kostkou ledu o délce strany a =
= 2,5cm, kterd plave na hladiné. Vyska hladiny i s plovouci kostkou je h = 10cm. O kolik
centimetru se vyska hladiny ve skleni¢ce zméni, kdyz kostka tuplné roztaje? Pokud hladina
stoupne, uvedte kladné cislo, pokud klesne, tak zaporné.

Viado mél pocit, zZe mu prisla limondda s vic ledem nez vodou. Mylil se.

Rozmery kocky st vyrazne mensie ako vyska hladiny, kocka bude teda volne plavat na hladine.
Plavajica kocka sa preto nachddza v rovnovaznej polohe, teda vyslednica sil na nu pésobiacich
je nulova. Podla Archimedovho zdkona plati

mg = psVpg = m=pVp,

kde m je hmotnost kocky ladu a V}, je objem jej ponorenej casti. Vlozenim kocky do pohara
s vodou sa jej hladina zdvihla o
Vo
nR2’
z ¢oho vyplyva, ze vyska hladiny vody pred vloZzenim kocky ladu bola ho = h — Ahg.
Pri roztapani kocky sa zachovava jej hmotnost, kvoli comu vyska hladiny narastie o

Ahg =

m Pv Vp

V;
Ahy =2 = & — P _ Ap,.
T RR2 nR? nR2 0

Vyska hladiny po roztopeni kocky bude
h1 =ho+ Ah1 =h —Aho+ Ahg=h.

Vyska hladiny sa teda zjavne nezmeni (Ah = 0). Tento vysledok plati vo vSeobecnosti pre
lubovolny tvar ,kocky“ Tadu, kedZe sme pri vypocte nevyuzili ziadne Specifické geometrické
vlastnosti spojené s kockou.

Vladimir Slanina
vladimir.slanina@fykos.cz

Uloha AB ... Markova jizda

Ulici se riti zavratnou rychlosti vyhlidkova tramvaj T3 Coupé vybavend turbomotory. Za pac-
kami nesedi nikdo jiny, nez on. Muz. Mytus. Legenda. Marek Milicka. Kazdou sekundou se
blizi k rozpadlému mostu pres Vltavu. Reka m4 siiku d = 200m. Zbytky mostu jsou tvoreny
néjezdy na obou brezich, které se zemfi sviraji tihel ¥ = 10°. Marek zrychli a. .. reku s tramvaji
preskoci a uspésné dopadne na nédjezd na druhém brehu. Jakou rychlosti se Markova tramvaj
pohybovala tésné pred skokem? 1 takové véci se daji zazit na FYKOSim soustredéni.

Oznacme si rychlost, kterou se tramvaj na pocatku pohybuje jako v. Protoze se pohybuje po
néjezdu, svird vektor rychlosti s horizontalni rovinou také thel 9. Pro horizontdlni (z-ovou)
a vertikdlni (y-ovou) slozku rychlosti tak plati

Vg = vcost,

vy = vsind.
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Oznacme si Cas, za ktery tramvaj feku preskoci jako t. Vime tak, ze plati
vtcost =d.

Navic vime, zZe ve vertikdlnim sméru bude prvni polovinu ¢asu tramvaj zpomalovana tthovym
zrychlenim g az dosdhne nulové vertikalni rychlosti, nacez jim bude zase zrychlovdna az na
druhé strané dopadne se stejnou vertikalni rychlosti, ale opacného sméru. Plati tak

vsinﬂfg%:().

7Z této rovnice mlizeme vyjadrit cas t a dosadit jej do predchozi rovnice
2
v . v
t=2-sind = 2sindcosd— =d.
g g

Néslednym vyuzitim vztahu sin 29 = 2sin cos 9 a dpravou pak pro rychlost v dostdvame

v/ 275 7mes! = 272 Tkmh "
sin 29

Petr Sacher
petr.sacher@fykos.cz

Uloha AC ... nesud rybu podle b&hani

Zajic s rybou si chtéji dat spravedlivy zavod, pri kterém by zajic bézel a ryba plavala. Vystartuji
najednou a urazi vzdalenost s = 500m po proudu reky, potom se oto¢i a vrati se zpatky na
zacatek. To ale stdle nenf tiplné spravedlivé. Reka md proud o rychlosti u = 1,0m-s™ . Zajic
bézi stejnou rychlosti, jako plave ryba, a to v = 10m-s~!. Jaky bude rozdil v jejich ¢asech?
Uvedte kladny vysledek, pokud prvni dobéhne zajic a zaporny, pokud prvni doplave ryba.
Lego ucil o pohybu v prostreds.

Zajacov Cas bude jednoducho 2s/v = 100s. Ryba bude mat v smere po pride rychlost v + u,
a teda Cas tejto polovice trasy s/(v + u) = 45,45s. Proti pridu bude jej rychlost zase v — u,
a Cas teda s/(v — u) = 55,55s. Spolu to bude teda rybe trvat priblizne 101,0s, ¢ize dopléva

0 1,0s neskoér ako zajac. Mame zadat kladny vysledok, ak prvy dobehne zajac, odpovedou preto
bude 1,0s.

Simon Pajger
legolas@fykos.cz

Uloha AD ... primérovani ahla

Legovi se zdal neprijemny sen: ocitl se uprostred stada bézicich koni. Usoudil, Ze nejmensi riziko
zranéni ma, pokud pobézi priblizné stejnym smérem jako oni. Proto chtél urcit jejich primérny
smér. Zvolil referenc¢ni vektor a zméril viici nému sméry nékolika okolnich koni, ¢imz ziskal
tthly 1°,5°,2°,358°,357°. Pod jakym itihlem vii¢i tomuto vektoru méd Lego bézet, aby to byl
prumérny smér koni v jeho okoli? Lego si v ramci svého vijzkumu cetl o flockingu.
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Ak by sme spravili aritmeticky priemer, dostaneme: (1° + 5° 4+ 2° 4 358° 4 357°)/5 = 144,6°.
Tento vysledok avsak nedava zmysel, kedze vsetky kone bezia priblizne v smere nasho vektora
a nam ako priemer vysiel smer 144,6°. Je to samozrejme sposoboné skokom v nule (kde je
zéroven uhol 360°).

Tento problém moézeme vyriesit tak, ze tento skok odstranime a budeme brat uhly z inter-
valu (—180°,180°). Potom dostaneme priemer (1° 4 5° 4 2° 4 (—2°) + (—3°))/5 = 0,6°, ¢o uz
je uveritelnd hodnota (a pre potreby tejto dlohy postacujiica).

Postup z predchadzajiceho odseku funguje iba v pripade, Ze smery st naozaj takto blizko pri
sebe. Keby sme mali napriklad vyrazne vacsi stibor tidajov pokryvajici rézne smery rovnomer-
nejsie, uz by sme to nemohli takto jednoducho spriemerovat. V takychto pripadoch sa pouziva
nasledovny postup: spo¢itame priemerny sinus a priemerny kosinus uhlov (tieto funkcie st spo-
jité, nemaju ziadne skoky) a vysledny priemerny uhol dostaneme ako arkustangens ich pomeru.
V nasom pripade to vyzerd nasledovne:

£ (sin1° 4 sin 5° + sin 2° + sin 358° + sin 357°)

: = 0,6°.
=(cos 1° 4 cos 5° + cos 2° + cos 358° + cos 357°)

arctg

Simon Pajger
legolas@fykos.cz

Uloha AE ... vive la révolution

Gilotina m4 ¢epel o hmotnosti m, kterd pri padu klouze ve zZlabcich dvou svislych protilehlych
tramii. Koeficient tfeni mezi cepeli a tramy je k a normalova sila mezi kazdym trdmem a cepeli
je F. Pod cepeli je umistén meloun, k jehoz rozseknuti je zapotiebi energie E. Urcete minimalni
vysku gilotiny pri zapocitani ztrat energie trenim.

Petr studoval historii Francie a sledoval demonstraci gilotiny.

Podla zadania sa vSetka energia vynalozend na brzdenie ¢epele trenim premeni na teplo. Celko-
va potrebna pociatoéna potencidlna energia sa bude preto rovnat suc¢tu pozadovanej kinetickej
energie E a prace vykonanej trenim. Tato pracu spocitame ako stcet trecich sil kF' na oboch tra-
moch prendsobenych nejakou vyskou h, po ktorej budi sily posobif. Celkovo dostavame 2k F'h.
Poznamenajme, ze normalova sila F' posobi v kazdej z dvoch drazok na cepel z dvoch pro-
tilahlych stran. Potom vyslednym prefaktorom je iba 2, a nie 4, kedze trecia sila nezavisi na
velkosti kontaktnej plochy. Teraz nam stac¢i si potrebnd potencidlnu energiu ¢epele mgh zapisat
do rovnice

mgh = E + 2kFh,
(mg—2kF)h=F,
E
" mg — 2kF
Gilotina z tohto dovodu musi byt vysokd asponn h = E/(mg — 2kF).

Jakub Kliment
jakub.kliment@fykos.cz
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Uloha AF ... dip na nachos

Mame hromadu nachos a dipu. Nachos maji tvar rovnostranného trojuhelniku s délkou hra-
ny a = 5,2cm. O kolik procent vic dipu spotrebujeme, kdyz budeme namécet nachos do dipu
tak, ze je drzime za vrchol, oproti tomu, kdy je budeme drzet za stred strany? V obou pri-
padech drzime nachos tak, abychom si neuspinili prsty, a nechame h = 0,62 cm nenamocenou.
Predpokladejte, Ze se nabira konstantni tloustka dipu. Tloustku nachos zanedbejte.

Karel premyslel nad tim, co vsechno nesmi jist.

Porovndvame dva pripady — v prvom pripade drzime trojuholnik (nachos) zvislo za jeho vrchol,
v druhom ho drzime za stred jeho strany. V oboch pripadoch budeme chciet spocitat obsah
Casti namocenej do dipu.

~

Obrézek 1: Geometria nachos po namoceni do dipu v prvom (vlavo) a druhom (vpravo)
pripade.

Do dipu sa samozrejme namaca z oboch stran, avSak vo vysledku nés bude zaujimat iba
pomer danych obsahov, takze sa obmedzime na jednu stranu trojuholnika. Pripomenme si,
7e vyska rovnostranného trojuholnika so stranou a je asin(60°) = av/3/2, takze jeho obsah
bude av/3/2 - a/2 = a*V/3/4.

V prvom pripade bude do dipu namoceny cely trojuholnik (so stranou a) az na cast tvaru
mensieho rovnostranného trojuholnika s vyskou h, teda so stranou 2h/ v/3. Obsah namocenej
Casti bude preto

h?.

i Y ()Y S

4 4 \\3 4 3

V druhom pripade je do dipu namocené naopak iba cast tvaru rovnostranného trojuholnika,

tentokrat s vyskou dlzky a+v/3/2—h. Jeho strana bude mat preto dizku 2(av/3/2—h)/v/3, potom
prislusny obsah bude

2
V3, _
S:Q M zﬁaZ—ah—l—ﬁhQ
2Ty V3 4 3

KedZe nés zaujima, o kolko percent viac dipu spotrebujeme v prvom pripade, budeme musiet
od pomeru S1/S2 odpocitat 100 %. Potom hladanym vyrazom bude pomer

Sy — S, ah — 23 p? Ah e
= = = 0.
S2 ?aQ —ah + ?hQ V3a —2h

Jakub Kliment
jakub.kliment@fykos.cz
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Uloha AG ... aktivni elektrarna

Jaderna elektrarna Temelin ma tepelny vykon P = 6,2 GW. UvaZzujme, zZe priumérna vyuzitelna
energie uvolnénd pii rozpadu jednoho jadra uranu **°U je Ey = 200 MeV a veskery vykon je
z tohoto rozpadu. Moldrni hmotnost izotopu 2*°U je Muyass = 235g-mol~! a polodas rozpadu
je T = 7,04 -10%let. Jeden bandn mé aktivitu A = 15Bq. Kolikrat vétsi je aktivita 235U
spotrebovaného za t = 1,0s v jaderné elektrarné Temelin oproti bananu?

Tuto tlohu VAm pfinasi Skupina CEZ. Dawid chtél byt aktivni, ale nechtélo se mu cvicit.

Nejprve si spocteme, kolik se v Jaderné elektrarné Temelin rozpadne jader uranu 2°U. Za jednu

sekundu bude pocet rozpadl
N="=x21-10".
Ey
Déme si pozor na jednotky a uvédomime si, ze Eo = 200 MeV = 3,20 - 107! J. Pro aktivitu

plati vzorec

A=)AN,

kde A je rozpadova konstanta, pro kterou zase plati
In2
A= —

T b

kde T je polocas rozpadu.
Kombinaci téchto vzorct a faktu, Ze nas zajima pomér aktivit Jaderné elektrarny Temelin Ay
a banidnu A, dostavame vysledné feseni jako

In2 Pt

Au T B,  Ptln2 6,2-10°W -1s-1n2

A A  AET  15Bq-3,20-10-11J-.2,22-1016s

Aktivita uranu spotfebovaného v Jaderné elektrarné Temelin je asi 402-krat vétsi, nez je aktivita
bananu.

=402.

David Skrob
david.skrob@fykos.cz

Uloha AH ... voda ve vzduchu

Hasic¢ hasi pozar, pricemz z vyvyseného mista nepretrzité kropi okoli souvislym proudem vody
z hadice. Hadici drzi tak, Ze usti je ve vysce ho = 3,2m nad povrchem zemé, na ktery voda
nésledné dopads. Voda vytékd z hadice o priiméru d = 75 mm rychlosti vo = 4,2m-s~! pod
pocatecnim thlem o = 35° vzhiiru vzhledem k horizont4Ini roviné. Jakou hmotnost ma voda,
ktera se v kazdém okamziku nachdzi ve vzduchu?

Karel premyslel nad hasici a imatrikulacni vodni slavobrdnou.

Na to, aby sme urcili, aky objem vody sa bude nachddzat v kazdom momente vo vzduchu,
potrebujeme najprv spocitat ¢as, ako dlho sa bude kazdy vodny element vo vzduchu nachadzat.
Jeho pociato¢na vyska nad zemou je ho a jeho pociatocnd rychlost vo vertikdlnom smere je voy, =
= wp sin a, takZe jeho okamzitd vyska nad zemou bude h(t) = ho+voyt —gt>/2. V momente, ked
vodny element dopadne na zem, sa tato vyska musi rovnat nule, preto stac¢i vyriesit vzniknuta
rovnicu s nulovou pravou stranou pre ¢as ¢

Voy + vgy + 2gho

1 .
ho+voyt—§gt220 = t= ; =1,09s,
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kde sme zvolili znamienko +, pretoze nds zaujima kladnd hodnota ¢asu ¢ (¢as v budicnosti).
Teraz ked pozname cas t, staci spocitat, kolko vody sa stihne za tento ¢as dostat do vzduchu,
teda vystrieknit von z hadice. T4 mé prietokovii rychlost vo a plochu prierezu S = nd? /4, takze
za dobu ¢ nou pretecie objem V = Swvpt. Tento objem je potrebné prendsobit hustotou vody p
a dostaneme hladant hmotnost vody nachddzajicej sa vo vzduchu

2 yvo Vo sina + +/v2sin? o + 2gho .
M:pV:pSvot:nd4pv0 0 0 970 =20kg.
g

Jakub Kliment

jakub.kliment@fykos.cz

Uloha BA ... valentynsky kazivec

Jak tak Vlado pred Valentynem hledal néjaky romanticky da-
rek pro svou pritelkyni Julku, zavital do obchodu s riznymi
ozdobnymi minerédly. Zaujaly ho vyrobky z kazivce, a tak se
zacal vice zamyslet nad jejich mystickymi vlastnostmi. Vypoci-
tejte, jakd je hustota monokrystalu kazivce a vysledek uvedte
na ¢tyri platné Cislice. Jedna buiika kazivce (CaF,) md roz-
mér a = 5,463 A. Jeho krystalovou miizku naleznete na pri-
lozeném obrazku. Molarni hmotnosti vapniku a fluoru jsou po
fadé Mca = 0,04008 kg-mol™! a Mr = 0,019 00 kg-mol ~*.

Tento rok to bude znovu kytice.

Monokrystal kazivce je tvoreny opakovanim velkého mnozstvi elementarnich mrizek. Spoc¢itanim
Hkulicek na obrazku“ zjistime, ze elementarni mrizku tvoii 8 atomui fluoru a 14 atomu vapniku;
musime si ale uvédomit, ze kazdy z atomt vapniku, ktery se nachazi ve stiedu stény je sdileny
dvéma bunkami a ze kazdy z atoma vapniku, ktery se nachézi ve vrcholu, je sdileny mezi osmi
burikami. Dohromady tedy dostaneme, Ze v celém krystalu na jednu bunku v pruméru pripadne
8 atomt fluoru a 1+ 4/2 + 8/8 = 4 atomy vdpniku — toto také odpovida faktu, ze sumérni
vzorec kazivce je CaF,.

Pro vypocet hustoty nyni staci urcit pomér hmotnosti téchto 12 atomt ku objemu elemen-
tarni mrizky, tedy

m 8mp + dmca 8Mp + 4Mca

p= Vv a3 Naa3

kde Np = 6,022 - 102®* mol™! zna& Avogadrovu konstantu a Mc, = 0,040 08kg-mol™! a My =
= 0,01900kg-mol™! zna&i moldrni hmotnosti jednotlivych prvki. Prevedenim a = 5,463 A =
= 5,463 - 1071 m a dosazenim dojdeme k vysledku

p=3181kgm ?,
ktery odpovida tabulkové hodnoté.

Vojtéch David
vojtech.david@fykos.cz
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Uloha BB ... drknuti do sklenice

Mame valcovou sklenici s vyskou h a priimérem podstavy d. Predpokladejme, zZe jeji tézisté je
ve stredu jeji osy. Jaky minimalni koeficient statického tieni s podlozkou je potreba, aby bylo
mozné sklenici prevrhnout pouze tlacenim z boku? Tlacit Ize do libovolného mista, ale pouze
vodorovné. Lego rozbil sklenicku.

Moment sily, ktory musime prekonat, je moment, ktorym by tiaz posobila voc¢i bodu dotyku
s podlozkou pri limitnom nakloneni pohara. Tiaz posobi v strede pohara, takze rameno sily
bude mat voéi bodu dotyku vodorovnu vzdialenost d/2. Velkost tohto momentu by bola M; =
= mgd/2, kde sme si oznacili hmotnost pohara ako m.

Ak by sme do pohdra drgli silou vi¢Sou nez je maximdlna sila statického trenia, zacal by
sa po podlozke kizat, &m by koeficient trenia klesol na hodnotu koeficientu dynamického trenia.
Najvacsia sanca pohar prevrhnit bude prave vtedy, ked zatlacime presne silou statického trenia,
Cize fmg.

Zéaroven zalezi na tom, v ktorom mieste pohéra don drgneme. Ak by sme do pohara zatlacili
pri jeho podstave, asi je intuitivne, Ze ho zrejme neprevrhneme. Najvacsi moment sily vyvolame,
ked budeme tlacit v jeho najvyssom bode, ¢ize h od podstavy. Vtedy sila nadsho tlacenia a trecia
sila budu spolu p6sobif na pohdr momentom sily My = mgfh. Dostavame rovnicu

M = M,
mgg:mgfh,
d

=

Toto je teda minimélne f potrebné na to, aby sme pohdr zacali naklanat. Ale ked ho uz
naklonime, zvisla vzdialenost bodu, v ktorom tlacime voci osi otaCania narastie, a zaroven
vodorovnd vzdialenost taziska od osi otdCania klesne. Z toho vyplyva, Ze hodnota f, ktord by
stacila na pociatoc¢né naklonenie, bude urcite stacit aj na uplné prevrhnutie pohara.

Simon Pajger
legolas@fykos.cz

Uloha BC ... mince na vodé

Na vodé lezi mince z kovu o hustoté p = 2580kg-m~>, poloméru r = 8,10mm a vysce h =
= 0,651 mm. Diky povrchovému napéti se mince nepotopi. Na jakou minimélni teplotu je
potfeba ohrfat vodu, aby se potopila? Povrchové napéti vody je pri teploté 50,0°C o50 =
=67,92mN-m~! a pri teploté 60,0 °C oo = 66,18 mN-m~!. Predpoklddejte, Ze zdvislost povr-
chového napéti na teploté je linedrni.

Danka by st chtéla zkusit lehnout si na vodu a nezmoknout.

Vysledna sila spésobend povrchovym napétim vody pdsobiaca na mincu bude F' = —oglcos0,
kde | = 277 je dlZka, na ktorej je minca v kontakte s povrchom vody, a 6 je kontaktny (zmécavy)
uhol hladiny vody voc¢i hrane mince. Na to, aby minca plavala na hladine, musi sila povrchového
napéitia vykompenzovat tiaz mince, takze musi platit

—2norcosf = mg,
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kde m = nrhp. Je zjavné, ze limitnym pripadom s minimalnym postacujicim povrchovym
napatim bude situdcia s § = 180°. Z toho dostdvame hodnotu povrchového napatia

_mg _ rhpg
CT o T 2

Zostdva nam dopocitat teplotu, pri ktorej voda nadobudne takiuto hodnotu povrchového
napatia. Ak si oznaéime t50 = 50,0 °C a tgo = 60,0 °C, linedrnu zévislost popisanti hodnotami
050 & ogo vieme zapisat ako o(t) = 050 + (060 — 050)(t — t50)/(teo — ts0). Z nej staéi vyjadrit
teplotu ¢, ¢im postupne dostavame

t—t rh
050 + (060 —050)750 = ﬂ,

teo — ts0 2
t—ts50 _ Th% — 050
teo — t50 060 — 050
rhpg
P9 o
t =150 + 2750@60 — tso) = 56,8 °C.
060 — 050

Jakub Kliment
jakub.kliment@fykos.cz

Uloha BD ... prokrastinaéni

Na Marka se sape povinnost, tak ji chyti, privaze ji na provaz dlouhy l = 3,0 m, zato¢i s ni tak, ze
provaz svira s vodorovnou rovinou tihel o« = 15°, a z provazu ji vypusti. Protoze je ale povinnost
dotérn4, jen co dopadne, rozbéhne se z klidu za Markem se zrychlenim a = 1,5 m-s~2, zatimco
on od vypusténi utikal od bodu, kam méla povinnost odpadnout, rychlosti v = 15km-h™".
Pokud je Marek vysoky h = 2,0m a v této vysce drzi provaz, za jak dlouho po dopadu ho
povinnost dostihne? Marek je muz soustredent, zdvazki a ciré vile.

Uloha je dabelskou sérif maljch vypocti, které na sebe navazuiji.

Rozeberme nejdrive situaci, kdy Marek s povinnosti tocil. Z rovnovahy sil zjistime, ze odstie-
diva sfla ptisobici na povinnost byla F, = mg cotg o = mwvg /r, kde m je hmotnost povinnosti,
g je tthové zrychleni, v¢ je tecna rychlost povinnosti a r je polomér otaceni, pro ktery plati r =
= [ cos a. Dostaneme tak pocatecni rychlost nasledujiciho vodorovného vrhu

vy = y/glcosacotga = 10,3m-s"'.

Jeho poédteéni vyska byla ' = h — Isina a vrh trval éas t = /2h//g = 0,50s. Za tu dobu
povinnost uletéla vzdalenost D = vt = 5,14 m, ale protoze neletéla pfimo od Marka, pfi
nahledu shora uvidime pravouhly trojihelnik s odvésnami r a D, hledand vzdalenost dopadu

povinnosti od Marka je pak
d=+/D?+1r2=590m.

Ve chvili, kdy Marek povinnost vypustil, vybéhl, a tedy kdyz se za nim rozbéhne, ma Marek
naskok
o =vt+d="798m.
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Pro ¢as T, za ktery Marka dobéhne, plati

1
iaT2 =z + 0T,
v+ Vv2 4+ 2a 29

a

T =

kde jsme vzali fyzikdlni kladny koren.
Dosazenim postupné do vzorct dostaneme T' = 7,1s.

Marek Milicka
marek.milicka@fykos.cz

Uloha BE ... zichrana Schrédingerovy kocky

Anicka ma v krabici zavienou Schrédingerovu kocku, jez ma zpocatku pravdépodobnost prezi-
ti po = 50 %. O kocku se boji, a tak uzavie dohodu s kouzelnou vilou — ta tfikrat sesle ozivovaci
kouzlo, které pokazdé zasahne krabici v nahodném misté. Krabice ma v piidorysu tvar obdélni-
ku o rozmérech a = 90cm a b = 75 cm. Kocku, kterd se béhem sesilani kouzel nepohne, Ize pri
pohledu shora modelovat jako kruh o poloméru r = 15 cm umistény nahodné v krabici. Pokud
je kocka zasazena, je okamzité zachranéna. Jaka je pravdépodobnost, ze je kocka po tretim
seslani kouzla nazivu? Anicka se boji kocek.

Je vyhodnéjsi spocitat si pravdépodobnost p, pripadu, ve kterych kocka zasazena nebude — tim
se totiz vyhneme TesSeni situaci, v nichz je kocka zasazena vicekrat. Pravdépodobnost, ze kocka
zasazena byla, je pak p, =1 — py.

Pravdépodobnost zasazeni kocky zachrannym kouzlem odpovidd dopadu kouzla do plochy
velikosti prurezu kocky oproti celkové plose, kterou mize zasdhnout. Mame tedy

2
nr

Pe ="y

Pravdépodobnost, ze jedno kouzlo kocku nezasdhne, je pak

2

11:1_7-
b ab

Aby kocka zemrfela, nesmi byt zasazena ani jednou a musi byt mrtvé jiz na zacatku. Plati

pak
r? 2
Po = Po 1—— ;
ab

a pravdépodobnost preziti kocky pak vycislime jako

g
p-6 =1—po <1T;Tb) =64%.

Petr Sacher
petr.sacher@fykos.cz
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Uloha BF ... kuli¢ka ve valci

Méme plnou homogenni kulicku s polomérem r a hmotnosti m, ktera se kutali uvniti valcové
dutiny s vnit'nim polomérem R = 3r. Dutina lezi tak, Ze jeji hlavni osa je rovnobézna s vo-
dorovnou rovinou, a tihové zrychleni g ptisobi ve svislém sméru. Po dobu par otocek miizeme
zanedbat energetické ztraty a kulicka neprokluzuje. Pomer rychlosti kulicky v nejnizsim misté
pohybu vy a nejvysSsim misté v je vi = Tva/4 = 1,75v2. Jaké maximélni rychlosti vmax dosahuje
kulicka v pribéhu pohybu? Jako vysledek odevzdejte vzorec vyjadreny v zavislosti pouze na
parametrech m, g a r. Karel chtel ddt dlohu s obrdzkem a pak byl linyg ho kreslit.

Kulicka ve valci koné translacni i rotacni pohyb, ktery je svazany diky tomu, zZe neprokluzuje.
To muzeme zachytit vztahem mezi jeji rychlosti v, polomérem r a tihlovou rychlosti w

V=Tw.

Celkova kinetickd energie kulicky je souctem transla¢ni a rotacni energie

1 1
li% = 5577IU? + éw]bd?,

kde index i jsme zavedli pro situace 1 odpovidajici nejnizsimu mistu pohybu a 2 nejvyssimu
mistu. J je pak moment setrvacnosti, ktery je pro plnou homogenni kulicku

2

J=—-mr®.
5
Vztah pro kinetickou energii mizeme upravit na
7

FE; = Emv,

Maximélni rychlost bude mit kuliéka v nejniiéim bodé svoji dréhy ( 1), pfiéemi rozdil

sy

= mg(h2 — h1). Nejspodnéjsi poloha tézisté kulicky je ve vysce hi = r nad spodkem vélce
a nejvyssi poloha pak ve vysce ho = 2R — r = 6r — r = 5r. Po dosazeni do zdkona zachovani
energie a par upravach se postupné dostavame k vysledku

7
ﬁmvf = Emvz +mg (h2 — h1)
VIR
s 42 5, 10
v — ?Elh = 7 g 4T
2
Ulzq/jQQTQZQLQWNW/ -9,12m-s".

Maximé&ln{ rychlost v prubéhu pohybu je vmax = v1 = 1/280gr/33 a tedy nezavisi na m.
Zbyvéa ovérit, ze tlloha neni chytak, micek skutecné vykond celou rotaci a nespadne pri tom.
Spadl by, kdyby tihova sila byla vétsi nez dostfediva sila potfebna k jeho zataceni. Srovname
dosttedivé zrychleni
v 320

ad0:§ ﬁ9>97
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pricemz polomér rotace jsme dosazovali R—r = 2r, protoze pravé po takovém poloméru kulicka
obiha. Zjistujeme, ze gravitacni sila neni dost silnd, aby micek strhla dold v nejvyssim bodé
trajektorie, tim padem ani ve zbyvajicich bodech trajektorie.

Zavérem bychom mohli poznamenat, ze se ndm malem podarilo zadat konstanty tak, ze by
to nebylo mozné a kulicka by v pritbéhu spadla. Ulohu jsme ale nechtéli zadat jako chytak.

Karel Kolar
karel@fykos.cz

Uloha BG ... mié¢ v ruce

Chceme chytit velky mi¢ jednou rukou a drzet ho pod ni. Situaci proto modelujme nasledovné.
Mame N = 5 prstii, miZzeme tedy pusobit v N bodech. Treni mezi prstem a micem je f =
= 0,53. Prsty jsou rozmistény symetricky kolem pdélu mice, ktery miri smérem nahoru v nasem
tthovém poli. Jaky nejmensi zenitovy tihel musime zvolit (tedy jak nejblize pélu), abychom mi¢
jesté udrzeli? Hmotnost mice je 550 g a normalova sila, kterou jeden prst miiZze na mi¢ piusobit,
je 5,6 N. Jarda nikdy nechdpal, jak nékdo mize takto udrZet basketbalovy mic.

Abychom mohli mi¢ v klidu drzet v ruce, potrebujeme, aby vyslednice sil na néj pusobicich byla
nulovd. Smérem dola na néj pusobi tihova sila mg, kterou musi kompenzovat treci sila. Ta mé
pro kazdy prst velikost fF', kde F je sila, kterou prst pusobi kolmo na povrch mice.

Necht tato sila svird se svislou rovinou thel a. Tak tfeci sila svird s vodorovnou rovinou
také tihel o a pusobi proti sméru pfipadného pohybu mice, tedy smérem k pdlu mice (nejvyse
polozenému bodu). Vodorovn4 slozka tieci sily je F' f cos « a svisld, pisobici nahoru, je F' f sin ..

Nyni je dilezité si uvédomit, ze ve vodorovném sméru se slozky treci F'f i tlakové sily F'
navzijem vyrusi, protoze jsme prsty rozlozili rovnomérné symetricky kolem svislé osy procha-
zejici pélem mice. Ve svislém sméru pusobi zminéna tihova sila, tieci sila a také svisla slozka
tlakové sily F' cos a, kterd pusobi smérem doli. Aby byla vyslednice nulova, musi platit

mg+ NFcosa=NFfsina.
Vyjddiime sin o pomoci kosinu jako v/1 — cos? o, dosadime a upravime
mg+ NFcosa=NFf4/1—cos?a,
m2g2 4+ 2mgNF cos a + N2F?cos® a = N2F2f2 - N2F2f2 cos® o,
m2g®> — N?°F?f? 4+ 2mgNF cosa + N> F? <f2 + 1) cos’a=0,

odkud feSenim kvadratické rovnice (bereme to kladné, aby platilo a < 90°) dostéavadme

1
- - (- 202 N2F2 _ 2,2 _ N2F2f2) N2F2 ({2
cos « 2N2F2(f2+1)( 2mgNF+\/4mgNF 4 (m3g N2F2f2) N2F2 (f +1)>7
1
[ 22 (2 — m2g2
cosa = f2+1)(mg+f\/NF(f +1) mg>u

cosa = f m?g? — mg
- f2+1 CON2F2(f2+1)2 NFE(f2+1)°
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Kdyby byl thel vétsi, tak by pravd strana prvni rovnice byla vétsi nez levad a mi¢ bychom
jednoduse udrzeli. V opacném piipadé bychom mi¢ neudrzeli. Diky rovnosti jsme tak nasli
hledanou limitni hodnotu.

Jaroslav Herman
jardah@fykos.cz

Uloha BH ... Srouby a matice

David se jednou vzbudil se zvlastnim snem: chtél do matky s vnitrnim primérem d; = 12,0 mm
dat sroub s vnéjsim primérem d = 18,0mm, obé hodnoty namérené pri pokojové teplo-
t6 tpokoj = 20,0°C. Na pomoc si v kramku koupil karafu kapalného dusiku, jehoz teplota pri
pouziti bylaTn, = 77,0K, do které sroub dal. Urcete, na jakou termodynamickou teplotu mus{
zahrat matku, aby se do sebe daly zasroubovat. Roztahovani a zmensovani drazek zanedbejte.
Tepelnd roztaznost obou objektii je a = 345 - 1076 K™, Uvazujeme, ze koeficient o je viici
teploté indiferentni. David povidal Matydsovi o jeho Zivotnim snu.

Potfebujeme, aby tepelné roztazeny prumér matky byl stejné velky jako tepelné snizeny prumeér
sroubu. Vzorec pro tepelnou roztaznost je

Ilr =1lo(1+ aAt).
Jelikoz se nase rozméry musi rovnat, vime, ze
d1(1 + a(Tmatka — Tpokoj)) = d2(1 + OZ(TN2 — Tpokoj)) 5
kde po tpravach dostavame

d2(1+ a(Tn, — Tookoj)) 1
Tmatka - Tpokoj - dlf)é P ’ - a

a Vyjé,df'ime ﬂl)atka

da(1+ a(In, — Tpoko)) — d1
d1a

+ Tpokoj =1420K.

Tmatka =

Matyds Beran
matyas.beran@fykos.cz

Uloha CA ... lusknutim prsti

Ve filmu Avengers: Infinity War zdpordak Thanos lusknutim prsti obrati polovinu zZivych bytost{
ve vesmiru v prach. Predstavme si, Ze to fyzikdlné dokaze tak, Ze témto organismim ve vesmiru
ucini vsechny atomy v jejich télech nestabilnimi s velmi kratkym polocasem Zivota. Jestlize se
za T = 5s od lusknuti zasazené bytosti rozpadnou z p = 99 %, jaky byl jejich poloc¢as rozpadu?

Druhd polovina vesmiru zemrela na rakovinu z doprovdzejictho ozdrent.

Vyuzijeme znalost rozpadového zakona,

N(t) = Noe ™,
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ktery udéava pocet nerozpadlych ¢astic N v Case t, pokud Ny je pocatecni pocet castic. \ je
rozpadové konstanta, kterd s polocasem rozpadu T}/, souvis{ vztahem

_In2

A= .
Ti/2

V zadaném case T pocet rozpadlych Castic splnuje podminku

No — N(T) -z
0TV T Ty
p No €

Ted uz ndm jen staci vyjadrit T -

In2

T1/2 = rT:O,75S

1
1-p

Petr Sacher
petr.sacher@fykos.cz

Uloha CB ... jak $lo kolo na vandr

Pato jel autem po dlouhé rovné prazdné cesté do kopce s konstantnim tihlem sklonu o = 3,8°.
Vtom uslysel divny zvuk, pohlédl do zrcatka a srdce mu spadlo do kalhot: zadni kolo jeho auta
se kutalelo za vozidlem! Auto ale pokracovalo dal, jakoby se viibec nic nestalo, a tak zacal
premyslet, co s kolem. Zastavovat ho by bylo nebezpecné, a tak se na néj rozhodl pockat na
misté, kde se zastavi. V jaké vzdalenosti od mista odpojeni se kolo zastavi?

Kolo povazujte za tuhy homogenni valec s hmotnosti m = 21kg a polomérem r = 32cm.
Bezprostredné po odpojeni mélo kolo obvodovou rychlost v = 90km-h™! a aZ do zastaveni se
bez prokluzovani kutalelo po primocaré trajektorii auta. Kolo je zaroven proti sméru pohybu
zpomalovino odporovou silou o velikosti kFx ptisobici v tézisti, kde k = 2,4 - 1072 je koeficient
umérnosti a Fx normalova sila, kterou cesta ptisobi na kolo. Deformaci kola neuvazujte.

Patovi se 1izeni zdd nebezpecné.

Riesenie pomocou prace a energie

Koleso sa po odpojeni pohybovalo nenulovou rychlostou v, z toho dévodu spocitame jeho poci-
ato¢nu kinetickt energiu Fy. T4 je dand sictom translacnej kinetickej energie

1
By = imv2

reprezentujicej posuvny pohyb taziska kolesa; a rotacnej kinetickej energie Ey . popisujicej
jeho otacavy pohyb, pre ktoru plati
1.5 171 5\0v2 1 o
Ek,r = 5[(&} = 5 <§m7" ) 7"72 = va .

V predoslom vztahu I = mr?/2 predstavuje moment zotrvacnosti plného homogénneho valca
voci jeho osi a w predstavuje uhlova rychlost kolesa, pre ktori z podmienky nepresmykovania
plati v = wr.

14
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Bez ujmy na vSeobecnosti mézeme zvolit nulovii hladinu potencidlnej energie (gravitaéného
pola) v mieste odpadnutia kolesa. Na koleso este pdsobi odporovd sila, avSak v momente od-
padnutia nestihla vykonat ziadnu pracu, nakolko koleso zatial nepreslo ziadnu dréahu. Celkova
pociatocné energia E; kolesa bezprostredne po odpojeni je potom

Ey = Ex = By + Exr = %va )

Pozrime sa teraz na konecény stav kolesa, kedy zastavi. Jeho kinetickd energia bude nutne
nulova, pohybom do kopca vsak vzrastie potencidlna energia. S ohladom na zvolent nulova
hladinu v mieste odpojenia bude konecna potencialna energia F, dand ako

E, = mgAh = mgssina,

kde g = 9,81 m-s~? je $tandardné tiazové zrychlenie a Ah vyskovy rozdiel. Tento rozdiel sme
urc¢ili z geometrie situdcie pomocou uhla sklonu cesty o a velkosti prejdenej drahy s, ktord
hladdame. Zaroven sa na brzdeni podiela aj odporova sila kFx, pricom pre normalovu silu pla-
ti Fx = mgcos a. Odpor je pocas celého deja konstantny a praca W odporovej sily na drahe s
je potom

W = kFxs = kmgscosa.

Zo zadkona zachovania energie plynie, Ze celd pociatocnd energia E; sa musi premenit na
narast potencidlnej energie E, a na teplo dané pracou W odporovej sily

Ei=E,+W,
3 9 .
7" =mgssina + kmgscos o .
Odtial uz len vyjadrime a dosadenim hodnét vycéislime drahu s, na ktorej koleso zastavi
3v° .
s = Y = 0,53km. (1)

4g (sina + k cos )

Riesenie pomocou sil

Alternativne mozno ulohu vyriesit zostavenim silovej a momentovej pohybovej rovnice. Vy-
slednica vonkajsich sil bude spomalovat posuvny pohyb hmotného stredu, ale sticasne aj ich
momenty za¢nu spomalovat otdcanie celého kolesa; pricom tieto dva deje st spolu pevne prepo-
jené podmienkou nepresmykovania (v tomto pripade a = er pre zrychlenie a posuvného pohybu
taziska a uhlové zrychlenie € celého kolesa), ktorti zabezpecuje statickd trecia sila Fy.

Pohybovy uc¢inok na koleso mé okrem trenia Fi aj zlozka tiazovej sily mgsin a smerujica
proti pohybu kolesa a tiez odporova sila kFx = kmg cos a rovnakého smeru. Pri valeni dopredu
mé koleso tendenciu presmykovat na podlozke dozadu, trecia sila Fi potom pdsobi v smere
pohybu, presne opacne ako ostatné sily. Ak zvolime aktudlny smer kotulania kolesa za kladny,
silovd rovnica posuvného pohybu mé tvar

ma = —mgsina — kmgcosa + Fy . (2)

Podobne moézeme pre rotaciu kolesa okolo svojej osi zostavit momentovt rovnicu. Tiazova
i odporova sila pdsobia v tazisku leziacom na osi, preto bude ich moment nulovy. Trecia sila F}
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pdsobi v rovine vozovky v bode dotyku s kolesom, jej moment vzhladom na os kolesa je vdaka
kolmosti dotyénice na polomer kruznice (resp. valca) rovny Fyr. Ziskavame momentovd rovnicu

Ie = —FtT’.

Zaporné znamienko momentu trecej sily plynie z toho, ze aj ked ma trecia sila smer pohybu
kolesa, roztd¢a ho presne opaénym (zidpornym) smerom. Po dosadeni I = mr?/2 a a = er

vyjadrime treciu silu F; ako

1
Fi = —Qma.

Dosadenim do pohybovej rovnice (E) dostdvame zrychlenie
2 .
a=-3g (sina+ kcosa) .

Nakolko je zrychlenie konstantné, mozno uplatnit standardné kinematické rovnice pre rov-
nomerne zrychleny pohyb. Pre rychlost u(t) kolesa v ¢ase (v kladnom smere) plati

u(t)=at+v = fggt(sinaJrkcosa) +wv.

V dase zastavenia t, je rychlost nulova (u(t,) = 0), z rovnice ho mozno vyjadrit ako

3v

t, = - .
2g (sin a + k cos )

Hladana dréaha s, ktorta koleso prejde rovnomerne spomalenym pohybom za dobu t,, je potom

s = 1at2 + vt, = 1 (—g (sin o+ k cos a)) 9v° + 30° =
27 ) 39 4492 (Sina+kcosa)2 2¢ (sina + k cos @)

3v? 3v? 302 .
- I - = 0,53km,
4g (sina+ kcosa)  2g(sina+ kcosa)  4g(sina+ kcos )

¢o odpovedd vysledku (E)

Patrik Stercz
patrik.stercz@fykos.cz

Uloha CC ... Wienuv filtr

Takzvany Wienuv filtr je zarizeni, které se pouziva, abychom z proudu nabitych castic vybrali
jen ty, které maji specifickou rychlost. Zarizeni sestava ze dvou rovnobéznych desticek, mezi
kterymi je homogenni elektrické pole o velikosti . a na néj kolmé homogenni magnetické pole
o velikosti B. Proud castic mezi desticky nalétava tak, Ze je jejich rychlost kolma na obé pole.
Mame-li zadané pole E a B, castice s jakou velikosti rychlosti ve filtru nezméni smér svého
pohybu? Petr sedél na predndsce z jaderné fyziky.

Budeme potrebovat vztahy pro elektrickou a magnetickou silu

Fp=4qE,
Fp=¢q(vxB).
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Ve Wienové filtru jsou sméry elektrického a magnetického pole zvoleny tak, Ze na prolétavajici
Castici ptisobi sily presné v opac¢ném sméru. Ulohu tak mizeme fesit jednorozmérné; protoze
rychlost prolétavajici ¢astice a B jsou navzajem kolmé, vektorové nasobeni se ndm prevede na
jednoduché. Aby castice filtrem proletéla, nesmi byt jeji pohyb jakkoliv zakiiven, tedy
Fr—-—Fp=0,
qF — quB =0.

To ndm na rychlost ¢astic dava jednoduchou podminku

E
v=—=.

B

Petr Sacher
petr.sacher@fykos.cz

Uloha CD ... rotujici umyvadlo

Predstavte si umyvadlo tvaru dutého vilce o poloméru r. Z jednoho mista na okraji jeho dna
tryska voda tak, ze dopada primo do stredu dna umyvadla a v nejvyssim bodé je ve vysce h nad
povrchem. Na jakou nejvétsi tihlovou rychlost miizeme umyvadlo i s tryskou roztocit kolem osy
valce, aby voda nedopadala na plast valce? Tym FYKOS byl na navstéve v CosmoCaiza.

Dokud se umyvadlo netoci, tak plati
r = volcos o,

kde r je polomér umyvadla, vg je po¢ateéni rychlost vody (vzhledem k umyvadlu a nynfi i vzhle-
dem k zemi) a cos a po¢ateéni smér vuci zemi. Cas ¢, po ktery jsou kapky ve vzduchu, mizeme
vyjadrit z vertikalni rychlosti

0=wvosina—g—,
0 92
200 si
‘e vosma7
g

kterd je zase spojena s dosazenou vyskou h skrze zdkon zachovani energie jako

1
Zm (vosina)® = mgh,,
vg sin®a = 2gh .

Ze zadanych parametru tedy dokdzeme vyjadrit

Kdyz umyvadlo rozto¢ime ihlovou rychlosti w, tak vzhledem k zemi se kapkam prida jesté
dalsi vodorovnd slozka rychlosti, kterd ma smeér tecné k pohybu a velikost v, = wr.
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Vime, Ze voda ve sméru normélovém urazi vzdalenost r. Aby vSak nedopadla na stfed kruhu,
ale na jeho okraj, musi i v te¢ném sméru urazit vzdalenost r (to je v tomto sméru vzdalenost
stfedu a okraje). Musi tak platit

1
vit=r=wrt = w=-=4/=.

Hledana dhlova rychlost tak je

w=4/=.
Kdybychom umyvadlo roztocili rychleji, tak by voda dopadala na plast valce v nenulové vysce.

Jaroslav Herman
jardah@fykos.cz

Uloha CE ... Titanic

Titanic pluje rychlosti v = 45,0km-h™! smérem k ledovci, kdy# vtom kapitén lodi spusti lodnf
sirénu, kterd vydava zvuk s frekvenci f = 440 Hz. Poté, co siréna umlkne, se zvuk od ledovce
odrazi zpatky. Jakou frekvenci f’ kapitdn uslysi?

Kdyby byl kapitan Petr, moznd by si toho vsiml.

Treba si uvedomit, ze Titanic aj Tadovec si zaroven vysielacom aj prijimacom, zavisi to od
smeru. Ak Titanic vysle zvuk s frekvenciou f, znamené to, ze Titanic je zdroj pohybujici
sa rychlostou v a ladovec je stojaci prijimac, ktory zachyti tento zvuk s frekvenciou

Cs

h=1r ~
s — v

Zvuk sa odrazi od Tadovca stéle s frekvenciou fi, ¢ize ladovec sa sprava ako stojaci zdroj.
A Titanic sa teraz pohybuje zvuku naproti, ¢ize sa sprava ako pohybujici sa prijimag, cize
zachyti zvuk s frekvenciou

Cs +v cs Cstv cstv
=f =f

Cs Cs— vV Cs Cs — v

f'=h = 473 Hz.
Inymi slovami: Tadovec sa sprava ako zrkadlo, a teda proti sebe idi akoby dve lode Titanic,
prvé je zdroj a druhd je prijimac.

Simon Pajger
legolas@fykos.cz

Uloha CF ... vanoc¢ni stromecek

Martin se chtél zbavit jehli¢i z vanocniho stromku, tim Ze ho roztoc¢i kolem osy
symetrie na tihlovou rychlost w = 5,5rad-s™'. Aproximujme vdnocéni stromek
Jjako ty¢ s vyskou h = 1,5m a polomérem r/2 a 5 diskii o polomérech 1r, 2r,
3r, 4r, 5r, kde r = 15cm s tloustkou | = 5,0 mm. Stredova ty¢ prochéazi skrz
disky (které tedy maji uprostied diru) a ma hustotu p = 900 kg-m™?. Disky majf
hustotu polovicni. Martina zajima kolik energie potrebuje k tomuto roztoceni.
Fykosdci a Martin cekali na predndsku.
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Kinetickd energia rota¢ného pohybu je Ex = Iw?/2, takZe ndm zostdva zistit uz len moment
zotrvacnosti stromceka 1.

Ignorujme na chvilu diery v diskoch. Moment zotrvacnosti pre plny disk s hmotnostou m
a polomerom R je I = mR?/2. Hmotnost spoéitame ako sicin hustoty a objemu, ¢ize v tomto
pripade m = (p/2)nR>l. Spolu teda pre disk s polomerom R dostdvame moment zotrvaénosti

I(R) = inle‘*.

Ked potom postupne podosiddzame R = ir, dostaneme celkovy moment zotrvacnosti diskov

5
Is = Z lnpl(ir)“ = 1nph«“(l + 16 + 81 + 256 + 625) = 9—79npl7“4 = 1,75kg-m”.
— 4 4 4
Zostdva ndm uz len stredova palica. T4 mé taktiez tvar disku, len s relativne velkou vys-
kou v porovnani s polomerom. Samotné palica by mala hmotnost pr(r/ 2)2h, ale v miestach,
kde prechidza cez disky sme polovicu z jej hustoty uz zapocitali do diskov. Musime preto
odéftat (p/2)n(r/2)?5l. Jej vysledny moment zotrvacnosti teda bude

1 7‘2 5 7"2 1 5 4 . 2
Iy==-mp— (h—2l)— == h— =l = kg-m” .
P 27“’)4( 2)4 327"3( 2>T 0,07kgm
Vidime, ze I, < Iq = I, + Iq = 14, ¢o mozno nie je az tak prekvapivé. Kazdopadne v ramci
nasej presnosti by takito aproximécia nebola dostacujica, takze potrebni energiu spocitame
ako 1
Ey = 5(Ip +I)w® =2757.

Simon Pajger
legolas@fykos.cz

Uloha CG ... kmita mi stil

Téleso o hmotnosti m = 100g je poloZzeno na desce, ktera harmonicky kmita ve své roviné
s tihlovou frekvenci w a amplitudou A = 3,0 cm. Jakd je hranicni w takovd, ze deska zacne pod
télesem prokluzovat? Soucinitel treni mezi télesem a deskou je f = 0,60.

Pepa doucoval mechaniku.

Vychylku dosky voci rovnovaznej polohe pocas jej kmitania vieme vyjadrif Standardnym vzta-
hom
z = Asin(wt) .

Na teleso pri takomto pohybe dosky posobi zotrvacénd sila velkosti |F| = m& v smere proti
zrychleniu & dosky. Doska pritom zac¢ne presmykovat v momente, ked velkost tejto sily presiahne
maximalnu treciu silu. V tomto hrani¢cnom pripade bude platit

mx = fmg.

Zrychlenie dosky vsak vieme urcit podla znameho vztahu pre zrychlenie v harmonickom pohy-
be & = —w?z alebo si ho vieme odvodit ako druhii derivéiciu vychylky podla ¢asu

i = —Aw’sin(wt) = —w’z.
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Znamienko zrychlenia tu uddva len jeho smer, takze ho mézeme dalej zanedbat. Velkost zrych-
lenia dosky potom rastie s velkostou jej vychylky, teda maximalna velkost tohto zrychlenia
bude

Tmax = WA,

Staci sa tak zamerat na pripad, v ktorom zotrvacna sila v momente maximalneho zrychlenia
prave presiahne hodnotu trecej sily. Tento hrani¢ny pripad nastane pre

mw?A = fmg,

odkial uz jednoduchymi dpravami vyjadrime potrebni minimélnu uhlovt frekvenciu ako

w= % = 14rad-s™".

Tomds Kubricky
tomas.kubricky@fykos.cz

Uloha CH ... Platéniiv tok

Jaky je tok elektrického pole pres jednu sténu pravidelného ikosaedru (dvacetisténu), v jehoz
stredu sidli naboj velikosti Q7
Jarda hdzel kostkou s dvaceti sténami.

Celkovy tok elektrického pole uzavienou plochou je dle Gaussovy véty

%EdS:Q.
€0

Protoze vSech 20 stran ikosaedru je stejnych, je tok jednou stranou Q/(20eq), coZ je feSeni nasi
tlohy.

Jaroslav Herman
jardah@fykos.cz

Uloha DA ... zah¥ivajici se odpor
Maéme zdroj napéti U = 250V a rezistor, jehoz odpor se s teplotou méni jako R(T) = Ro(1 +
+ aAT), kde Ry = 5,09 je odpor pii pokojové teploté, o = 4,9 - 1073 K™ je teplotni koefi-
cient elektrického odporu a AT rozdil teploty rezistoru od pokojové teploty. Predpokladejme,
Ze teplota rezistoru je oproti okoli vyssi o AT = P, kde P je prikon na rezistoru a 8 =
=1,5-10"2K-W~L. Na jaké hodnoté se ustali proud? Lego si stavel obvod.
Prikon na rezistore je P = UI = U?/R. Tento vztah dosadime do vzorca pre teplotny rozdiel,
a ten nasledne do vzorca pre odpor
U2
R = Ro+ RoafS—-.

o+ Roaf3 7

Mobzeme si to upravit do kvadratickej rovnice pre odpor ako

R?* — RRy — RoaBU? = 0.
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Riesenia tejto rovnice st
Ry + /R% + 4Ry SU?
5 .
Riesenie s minusom ndm dé zaporny odpor, ¢o nedava fyzikalny zmysel, navyse je to ,nestabilné
rovnovaha®. Z tohto dévodu zoberieme riesenie s plusom. Prid potom bude

\/R2+ 4R U2 - R
U 2U _ 5 +4Roaf 0£32A.

Rio=

I = = =
R Ry ++/R2 +4RoapU? 2RoapU

Simon Pajger
legolas@fykos.cz

Uloha DB ... trojsrazka

Dvé identické hladké koule s poloméry r = 10 cm lezi v klidu na vodorovném stole a jejich stredy
jsou ve vzdalenosti d = 30 cm. Treti identickd koule se pfiblizuje rychlosti v = 1,0m-s~! po ose
usecky dané jejich stredy. Vsechny srazky jsou okamzité a dokonale pruzné. Jaka bude rychlost
priblizujici se koule po srazkach? Zapiste kladny vysledek, pokud piijde ve svém piivodnim
sméru, a zaporny, pokud piijde v opacném smeéru.

Lego chtél vymyslet ulohu na Jardiv zpusob.

Kedze gule st dokonale hladké, nie je medzi nimi ziadne trenie, tym padom budu pri zrazke na
seba pdsobit iba normalovymi silami. To znamend, ze obe stojace gule odletia v smere, ktory je
dany spojnicou ich stredu a stredu prichadzajicej gule. Tento smer dostaneme z pravouhlého
trojuholniku, ktorého prepona je prisluini spojnica (dizka 2r) a jedna odvesna je polovica
tseCky medzi stojacimi gulami (diika d/2). Na zédklade toho bude smer pohybu so smerom
prichddzajicej gule zvierat uhol
. d
¢ = arcsin .

Zaroven zo symetrie je jasné, ze prichddzajica gula sa bude po zrazke nadalej pohybovat bud
v smere svojej povodnej rychlosti, alebo v presne opa¢nom smere. Oznac¢me si tito rychlost vq
(kde kladny smer je v smere jej povodnej rychlosti). Zarovern zo symetrie vyplyva, ze zvy$né
dve gule budt mat navzajom rovnaku velkost rychlosti, ozna¢me si ju ako wva.

Potom zo zédkona zachovania energie vyplyva

1 5 1 5 1 5
imv = §mvl +2- imvg R
v = vf + 2v§ .
A zo zékona zachovania hybnosti
muv = mu1 + 2muz cos

v =wv1 + 2v2cos p,
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pretoze zlozky hybnosti v kolmom smere sa vyrusia. Vyjadrime si zo zédkona zachovania hyb-
nosti v1 = v — 2v3 cos p a dosadime do zdkona zachovania energie

v® = (v — 2uz cos @)? + 203,

v? = v? — 4w, cos ©+ 4113 cos? ©+ 21;% ,
4v cos p = 4vs cos® 4 2v2,
2v cos ¢
Yy,
2cos?p+1
kde sme sa riesenia ve = 0 zbavili, pretoze to by zodpovedalo situécii, kedy ku Ziadnej zrazke
nedojde. Zostava dosadit spat do zédkona zachovania hybnosti a dostavame

4cos® @ 1—2cos?
v = v.
2cos?2p+1 2cos?2p+1

V1 =V —2v2C08p =V —

Z goniometrie vyplyva cos(arcsinz) = /1 — z2, ¢ize

d? — 8r?

YT o g2

v=0,067Tms *.

Simon Pajger
legolas@fykos.cz

Uloha DC ... Wattiiv magneticky regulitor

Uvazme klasicky Wattiv reguldtor sestavajici ze svislé osy, ke které jsou v jednom spolecném
kloubu volné pripevnéna dvé nehmotna ramena délky | = 30,0 cm, na jejichz koncich jsou mald
kulovd zavazi s hmotnostmi m = 100g. KdyZ se tato osa roztoci, ramena se zacnou vlivem
odstredivé sily zdvihat. V nasi situaci jsou zavazi navic nabitd stejnymi naboji ¢ = 2,00 uC
a cely systém se nachdzi v homogennim magnetickém poli o hypotetické velikosti B = 750kT
ve sméru osy. Pri jaké nejmensi velikosti tthlové rychlosti w se ramena mohou rozepnout do
thlu 29 = 90,0°7 Petra bavi magnetismus.

Rozepiseme si silu pusobici na jedno zavazi v jednotlivych smérech. Ve vertikdlnim sméru na
zévazi pusobi pouze tihova sila:

F.=mg,
pricemz jsme si zvolili kladny smér osy smérem dola. V radidlnim sméru musime pocitat s od-
stredivou, elektrostatickou a magnetickou silou — pro ty postupné plati

2
Foqg = mw'r,

1 ¢

4neg (27‘)2 ’
Fag = £qurB,

kde r je vzdalenost zavazi od osy. P¥i odvozeni vztahu pro Fiag rovnici jsme vyuzili vztah pro
magnetickou silu
F=g¢q (V X B) )
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do kterého jsme dosadili vztah pro rychlost pri pohybu po kruznici v = wr a poté jsme si uvédo-
mili, Ze se pohyb odehrava v horizontalni roving, na kterou je magnetické pole kolmé — vektorovy
soucin se proto zjednodusi na soucin klasicky a vysledny vektor bude mirit v radidlnim sméru.
Musime zde také pocitat s tim, ze nevime, kterym smérem miri magnetickd indukce B a kte-
rym smérem se reguldtor bude otdcet, a tedy ani nevime, kterym smérem bude magnetickd
sila pusobit (ackoliv z pozadavku na minimalni rychlost otd¢eni tusime, Ze se reguldtor bude
otadet v takovém sméru, aby vysledna sila mitila radidlné od osy otdceni). Z geometrie uréime,
ze r = Isin 1, proto pro celkovou radidlni silu dostévame

2
. q 1 .
F, = mw’lsing + — ———— + qwlBsind.
' + 4zeg 412 sin? 9 4
Aby byla soustava v rovnovaze, musi byt smér vysledné sily rovnobézny s ramenem, na
kterém je zavazi upevnéno. Musi tedy platit

Fy
tg = —
g .’

coz po upravé vede na kvadratickou rovnici

2
inﬁw el L g_1 =0

16ml3meg sin® 9 [ cos®

)

jejimiz kofeny jsou

B 1 [eBE @2 1 ag 1) L
+ <2m 2 \/ m? 4nl3meg sin3 9 + l cosd | i2715I‘a’d S )
w =

¥<£+% B2 _ _¢® 1319+4T9 L ):$17,1rad~sfl.

2m m2 4rnl3meq sin cos ¥

Otazka ze zadani znéla, pti jaké nejmensi velikosti rychlosti dojde k rozepnuti, spravnym rese-
nim je tedy mensi velikost rychlosti

lw| = 2,15rad-s™".

Petr Sacher
petr.sacher@fykos.cz

Uloha DD ... pfevrhly vlak

Babicka se dozvédéla o Coriolisové sile a pri cesté vlakem z Prahy presné na jih panikarila,
Ze vagoény nesmi jet prilis rychle, aby se neprevrhly. Vagén ma obdélnikovy prurez sitky a =
= 3150mm a vysky b = 4320 mm, s tézistém uprostred prifezu. Praha lezi pfiblizné na 50°
severni Sitky. Jakou minimalni rychlosti by vagén musel jet? Odhad postaci, relativistické efekty
Ize ignorovat. Vysledek uvedte na dvé platné cifry.

Népovéda: Na téleso o hmotnosti m pohybujici se rychlosti v ve vztazné soustavé, ktera rotuje
tihlovou rychlosti w, piisobi Coriolisova sila Fcor = —2mw X v.

Petr sedél ve vliaku, kde se dély divné véci.

Zajimé-li nas jen velikost Coriolisovy sily, stac¢i ve vztahu uvedeném v napovédé uvazit misto
vektorového soucinu jednoduchy soucin velikosti w krat v krat sinus thld mezi nimi. Vektor w
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mifi ve sméru osy rotace, zemépisna sitka se vsak méri od rovniku. Oznac¢me si tihel zemépisné
sirky

9 =50°,
miizeme si pak rozmyslet, ze tihel mezi vektory w a v je t—1J, coz ndm po tpravé sinu a zanedbani
znaménka, které jen udava orientaci sily, dava pro velikost Coriolisovy sily

Feor = 2mwuvsind .

Aby se vagén prevratil, musi moment sily, kterym na néj ptsobi Coriolisova sila, vyrovnat
moment sily, kterym na néj pisobi tihova sila. Snadno si mtzeme rozmyslet, ze tihova sila
pusobi nejvétsim momentem sily v momenté, kdy vagdn neni jakkoliv nachyleny. To znamena,
ze nam staci prekonat tihovou silu jen na zacatku prevraceni, pak uz bude jeji vliv vzdy jen
mensi. Oznacime-li o tthel mezi thloptickou prurezu vagénu a vertikalni osou, musi platit

mgsina = 2mwv sin ¥ cos a.,
upravime-li tento vztah, vyuzijeme-li tga = a/b a vyjadiime-li w = 2r/T, kde T je perioda
otacen{ Zemé (tedy priblizné 24 h), dostdvame

_gTa 1

=2 = 64km-s".
v 47 b sin ¥ G kem-s

Petr Sacher
petr.sacher@fykos.cz

Uloha DE ... Kam s nim?

Jan Neruda uz ma plné zuby svého starého slamniku. Misto toho, aby ho po troskach trousil
pri prochazkach z nohavic, rozhodne se slamnik svazat do malé kulicky hmotnosti m = 20kg
a vystrelit ji z podomacku vyrobeného katapultu od svého domu v Konviktské ulici ¢. p. 30
do Vitavy. Reka je vzdalend L = 250m a prostrednich 13/15 trasy je zastavéno domy vys-
ky h = 18 m, které je potreba prestrelit. Poslednim krokem je vybrat do katapultu dostatecné
tuhou pruzinu, kterd vystrel ndloze zaridi. Jaka minimalni tuhost pruziny je tfeba, umozinuje-li
katapult jeji maximalni natazeni o x = 1,25 m? Katapultem je mozné strilet pod libovolnym
thlem. Petr cetl slavny Neruduv fejeton ,Kam s nim?*

Uvazme parabolickou drahu, po které slamnik poleti. Polozime-li si poc¢atek nasich souradnic
doprostied vzdalenosti, kterou musi preletét, muzeme rovnici trajektorie napsat ve tvaru

y=—al>+H,

kde [ je horizontalni vzdalenost od prostiedku drahy, H je maximalni vyska, do které slamnik
vyleti a a je parametr udévajici tvar paraboly. Protoze je na zac¢atku slamnik na zemi, plati

L 2
=—a(= H.
0 a<2) +

Aby slamnik pri co mozna nejmensi dosazené vysce H preletél fadu domi, které mu stoji v cesté,

musi platit
13 \?
h=—-a(=—L H.
a(30 ) M
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Méme tedy soustavu rovnic

225h

_ - 103 !t
a—14L2—4,63 107"m
225h .
H=——=7232m.
56 72,32 m

Aby slamnik do vysky H vyletél, musi byt jeho pocdteéni vertikalni rychlost takova, aby (kvuli
zdkonu zachovani{ energie) platilo

1
imvi =mgH = vy=+/29H.

Zaroven vsak potfebujeme, aby mél slamnik na pocatku vhodné velkou horizontalni slozku
rychlosti — pokud bude mit nespravnou, poleti po jiné nez nami kyzené trajektorii. Spravna
horizontalni rychlost je takova, ze celkova rychlost bude tecna na trajektorii. Vime, ze tan-
gens tecny ke grafu v daném bodé je roven derivaci v tomto bodé. Pro nasi derivaci obecné,
resp. konkrétné na zacatku trajektorie plati

y =—-2al = y'(f§>:aL,

Vyuzitim vyse zminéné vlastnosti derivace mame

U—y:aL = Up = 29H
Vg al

Zde se jesté pozastavme nad jednou myslenkou — pokud by platilo

Yy

T
. <l=tg 1
tedy pokud by takovy vystrel, ktery by tésné preletél domy stojici mu v cesté, byl vystielen pod
dhlem mensim nez 45°, bylo by vyhodnéjsi slamnik vystfelit prosté pod thlem 45°, nebot pii
tomto thlu je pomér dostielu a potiebné energie optimalni. V nasem pripadé vSak plati |aL| =
= 1,16, coz znamend, ze chceme balik stiilet pod dhlem, pii kterém mezi pomérem vy, vy
a alL plati rovnost.

Aby katapult dostfelil, musi byt celou jeho pocateéni kinetickou energii mozné ,ulozit“ do
natazené pruziny. Vyuzitim vztahu pro potencidlni energii pruziny tedy mame
1

1
am (Ui + ’Uz) = 5]%2

a odtud uz vyjadfenim tuhosti k a dosazenim dostaneme

o 225mgh (14a°L?
- 28 g2 a?L?

) = 32kN-m~'.

Uloha ¢&erpé z fejetonu Jana Nerudy, v ném# autor pojedndva o tom, jak se zbavit starého
slamniku, ktery tehdy nebylo kam vyhodit. Autor navrhuje slamnik napriklad postupné trousit
z nohavic.

Petr Sacher
petr.sacher@fykos.cz
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Uloha DF ... dabelska

V nejhlubsi propasti pekla je uprostred zamrzlé plochy zarazen sam Lucifer se tremi tvaremi,
v kazdych tstech trimaje jednoho zradce. Kolem néj je na ledu namalovan pentagram tvoreny
kruhem poloméru R, v némz je vepsana pravidelnd péticipa hvézda. Ve trech z vrcholii hvézdy
se nachdzi ndboj @ a ve trech z priisec¢iki hvézdy se nachézi ndboj q stejného znaménka. Jaky
musi byt pomér Q/q, aby ve stredu pentagramu, kde se nachdzi Lucifer bylo nulové elektrické
pole? Petr kdysi cetl Bozskou komedii.

vvvvv

me urcit, jak vzdéalené jsou naboje ¢. Ty se nachézeji na néjaké mensi kruznici, ozna¢me jeji
polomér a. Pruseciky pentagramu tvori pravidelny pétithelnik, rozdélime-li ho na pét troju-
helniki, dostdvame, Ze jeden trojuhelnik mé u stfedu kruhu vrchol s dhlem o = 360°/5 = 72°
a u zbylych dvou vrcholt je thel 8 = 54°. Uvazme dtvar tvofeny jednim cipem hvézdy a k nému
prilehlym trojihelnikem z vnitiniho pétithelniku. Soucet vysek téchto trojihelniki je presné R,
vSechny thly uvnitf itvaru jsme schopni urcit ze znalosti o a 8. Pouzitim trochy trigonometrie
a upravou jsme pak schopni a vyjadrit jako

R

@ = 32 72° cos54° + sin Ao

Rozmysleme si, jak budou ndboje umistény. Na jednom kruhu mohou byt naboje rozmistény
bud tak, zZe spolu vsechny tfi sousedi, nebo Ze spolu sousedi dva a tfeti je naproti jim. Tak ¢i
tak, ze symetrie mizeme uvazit, ze na druhém kruhu musi byt naboje usporadény tak, jako
kdybychom néboje na prvnim kruhu soumérné zobrazili pres stfed kruhu a preskdlovali na
polomér druhého kruhu. Kdyz si pak vyjadiime elektrickou intenzitu ve stfedu kruhu, ktera
bude souctem intenzit od naboji na vnitinim kruhu E; a od naboji na vnéjsim kruhu Egq,
potfebujeme takovou velikost naboju, aby platila podminka

E,+Eq=0.

Ovsem, diky symetrii maji az na znaménko E; i Eg stejny tvar a lis{ se jen koeficien-
tem Q/R?, resp. q/a*. Dostavame tak

Q—i Q7<5)27 o o . o\2 -
o = .\ = (tg72° cos 54° 4 sin 54)" = 6,85.

Zajimavé je také podotknout, ze plati

1/5:¢:1,61803...,
a

kde ¢ je zlaty fez.

Petr Sacher
petr.sacher@fykos.cz
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Uloha DG ... koralek na parabole

Méjme kordlek hmotnosti m volné navleceny na drété tvaru grafu paraboly y = ax?® v homo-
gennim tihovém poli. Drét roztocime okolo osy (,0sy y*), kterd je rovnobéznd s g. Jakd musi
byt dhlova rychlost w, aby koralek pri libovolném vychyleni po parabole neklouzal?

Petr vzpominal na teoretickou mechaniku.

Vyjadreme si vektorové sily, které na kordlek pusobi. V z-ovém sméru je to odstrediva sila
a v y-ovém sméru je to tthova sila. Plati tak

F— [mwzx} .
—myg
Korélek se muze pohybovat jen po parabole. Aby se nepohyboval, musi vyslednd sila na
kordlek pusobit ve sméru normély na parabolu — pokud by tomu tak nebylo, te¢na slozka by
zpusobila, ze by koralek po parabole ,sklouznul®“ jinam. Vysledna sila ma smér normély praveé
tehdy, kdyz je vysledna sila kolma na tecnu k parabole. Tu si vSak umime jednoduse vyjadrit

pomoci derivace. Plati
y' = 2azx,

pro vektor ve sméru teCny v bodé x tak plati

]

Kolmost pak ovéfime tim, ze v a F musi mit nulovy skaldrni souc¢in. Podminka na w je tak

F~V:mw2x72mgam:0.

Z toho pak plyne
w=1/2g9a.

Petr Sacher
petr.sacher@fykos.cz

Uloha DH ... piebihéni pfed autem

Lego nékdy prebéhne pres cestu prilis natésno, tak si re-

kl, ze tentokrat si radsi vSechno spocita pro pripad, Ze by a @
auto ridil Radek, ktery kvili chodciim nezpomaluje. Situ- Y

ace je zakreslena na obrazku. Jakou minimalni rychlosti
musi Lego bézet, aby prebéhl pred autem? Lego nemu-
si nutné bézet kolmo k silnici. Vysledek vyjadrete jako -
funkci veli¢in v, y, a. Lego

Nez si to Lego spocital, bylo auto samozrejmé pryc.

Zadanie spomina, ze Lego nemusi bezaf kolmo k ceste. Bezat smerom k autu sa mu avsak
zrejme neoplati, preto si oznacme vzdialenost medzi najblizsim bodom na opacnej strane cesty
a bodom, kam dobehne ako x. Ak dobehne do tohto bodu skor ako auto, tak mozeme tvrdit,
ze ho stihol predbehntif. Zaroven moézeme predpokladat, ze Lego pobezi pomalSou rychlostou,
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nez je rychlost auta. Z toho dévodu, ak ho auto nedobehlo v tomto bode, nedobehlo ho ani
predtym. Nie je tym padom ani dévod, aby Lego nejako kluckoval, ide len o to, ¢o najskor dojst
do tohto konkrétneho bodu.

Vzdialenost auta k bodu, kde Lego opusti cestu je a + z, ¢ize auto tam bude za ¢as (a +

+ z)/v. Legova vzdialenost k tomuto bodu je \/z? + y2, a preto musi bezat rychlostou v, =

=vy/z2? +y?/(a+ ).

Zostava prist na to, pre ktoré = je potrebna rychlost najmensia. Na zistenie tejto rychlosti

zderivujeme vy, podla x
z(atz) /2 2
don _ Ve vy
dz (a+x)?

)

a hladdme, kde sa derivacia rovna 0. To nastane prave vtedy, ked je citatel nulovy

HeL e,

xa+x2:x2+y2,

Dosadime spéat do vyjadrenia potrebnej rychlosti

Jul 4 2
veEty Ve TV gyt y

v v .
a+wx a—|—% a? + 12 /42 + a2

RieSenie vo vztaZnej sdstave auta

VL =V

Tito tlohu vieme elegantne riesit tiez vo vztaznej sistave auta. V tej sa poloha auta po cely cas
nebude menit. Zavedme os x rovnobezne s cestou tak, aby sa auto nachadzalo na stradnici x = 0
Lego na zaciatku na suradnici x = a. Lego stihne cez cestu prebehnut prave vtedy, ak sa bude
pocas celého svojho pohybu nachadzat na nezdpornej x-ovej suradnici.

Hraniénym pripadom bude, podobne ako v predoslom rieseni, taky pohyb, pri ktorom Lego
dojde na druhi stranu cesty v rovnakom okamihu, ako sa na tom istom mieste ocitne aj auto.
Lego sa tak na druhej strane cesty bude v tomto hrani¢nom pripade nachadzat prave na surad-
nici x = 0. Kedze sa Legovi neoplati kluckovat v ststave spojenej s nim, tak aj jeho trajektéria
vo vztaznej stustave auta bude urcite rovna tsecka.

Vieme tak uz presne nakreslit trajektériu Legovho pohybu v ststave spojenej s autom —
staci nam tuseckou spojit Legovu pociatoéni polohu a polohu auta na druhej strane cesty.
Presne tento smer tak musi mat aj Legova rychlost vo vztaznej sistave auta. Dalej tiez vieme,
ze Legov vektor rychlosti v tejto vztaznej sistave vieme rozlozit na sticet vektora rychlosti vi,,
ktorou sa pohyboval v vztaznej stistave zeme, a vektora rychlosti —v, kde v je vektor rychlosti
auta takisto vo vzfaznej stistave zeme.

Toto scitanie vektorov vieme urobit graficky, ako na obrizku nizsie. Vieme, Ze vysledni-
ca —v + v, musi udavat priamku spdjajicu Lega a predok auta. Mame teda priamku a bod
(koniec vektora —v), ktoré chceme spojit najkratSou moznou tsekou. A to je prave kolmica
na danu priamku z konca vektora —v.
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Legoi

Takto uz dostdvame geometricky dvojicu pravouhlych trojuholnikov s jednym spolo¢nym
uhlom ¢. Preponu trojuholnika, po ktorej sa Lego pohybuje, vieme lahko z Pythagorovej vety
dopocitat ako /y? + a?. Odtial uz dostdvame pre velkosti jednotlivych rychlost{ a pomery
dizok stran v dangch trojuholnikoch rovnicu

Y

¢ize miniméalna rychlost, ktorou sa Lego musi pohybovat, je

. UL
sinp = — =
v

UL = 11# .
/y2 + a?
Simon Pajger Tomds Kubricky
legolas@fykos.cz tomas.kubricky@fykos.cz

Uloha EA ... rozpad kaonu

Céstice kaon s celkovou energif Fx = 500 MeV se rozpadne na dva identické piony se stejnou
energii. Jaky bude tihel a mezi sméry, do kterych se piony rozlétnou? Klidova hmotnost kaonu
je mx = 498 MeV/c? a klidovd hmotnost pionu je m. = 135 MeV /2.

Népovéda: Jisté zndte prosluly vztah E = mc®. Ten Ize ale také prepsat do podoby E =

= /mic* + p2c?, kde mg je klidovd hmotnost. Vyuzijte toho.
Petr se cvicil v cdsticové fyzice.

Energii pionu si ozna¢me FEr, hybnosti piond pr,1 a pr,2. Nejprve si upravime jednotky. V ¢as-
ticové fyzice se obvykle pouzivaji ptfirozené jednotky, ve kterych pokladdme ¢ = 1 a hmotnost
a hybnost piSeme v jednotkédch energie. Preznacime si

_ 2
m = moc”,
P =Ppc¢,

konkrétné pro klidové hmotnosti kaonu a pionu mame

mk = 498 MeV ,
my, = 135 MeV .

Diky vztahu

E =+/m?2+p?

29


mailto:legolas@fykos.cz
mailto:tomas.kubricky@fykos.cz

Fyziklani 2026 20. roénik 13. Unora 2026

a tomu, Ze piony maji stejnou energii, jisté vime, Ze piony museji mit stejnou velikost hybnosti,
kterou oznac¢ime jednotné pr. Zakon zachovani hybnosti ndm navic dava

PK = Pr,1 + Pr,2,
pf( = 2p72[ + 21772t cos .

V druhé rovnici jsme si spocitali kvadrat velikosti hybnosti a vyuzili vztahu px,1-pr,2 = P2 cos a.
Z toho si vyjadrime
2
pz _ Pk ]
" 2(1+cosa)

Ze zakona zachovani energie plyne
Ex = (2B:)? = Eg=4(mi+p3),
z éehoz po dosazeni za p2 mizeme vyjadiit

E% —2m% +4m?

cosa =
2 2
B —4msi

Dosazenim a inverzi kosinu mame
. o
a = 168" .

Petr Sacher

petr.sacher@fykos.cz

Uloha EB ... t¥i koule

Meéjme tri ocelové koule s hmotnostmi m = 300 g uchycené na nehmotnych provazech délky L =
= 75 cm, jejichz druhé konce jsou spojeny v jednom bodé. Kazdou z kouli nabijeme nabojem q =
= 5,0uC. KdyZ cely systém zavésime za bod, ve kterém jsou provazy spojené, jaka bude plocha
vodorovného trojiihelnika, ktery koule vytvori? Nebojte se tilohu resit priblizné nebo numericky.

Petr vzpominal na kurz elektromagnetismu.
Ze symetrie jisté vime, ze trojihelnik bude rovnostranny. Oznacme si délku jeho strany jako a.
Kazdy naboj pak na kazdy jiny piusobi silou

1 ¢ kq?

L= =
4neg a? a?

ve sméru od stfedu trojuhelniku. Sila na jeden naboj vSak nebude jednoduse dvojndsobkem
velikosti sily od jednoho jiného néboje — slozky sily piisobici proti sobé se diky symetrii vynuluji
a zbyde slozka ve sméru osy nabojiu. Ta bude mit velikost

kq®>V/3

Fiot = 2F, cos 30° = 5
a

Aby byl systém v rovnovédze, musi byt délka a takovd, aby vysledna sila na kouli byla ve smé-
ru napnuti provazu. Pokud by nebyla, bude na koule ptisobit nulovy moment sily a v rovnovize
tedy nebudou. Pro vysku trojihelnika plati

V3

v=—a,

2

30


mailto:petr.sacher@fykos.cz

Fyziklani 2026 20. roénik 13. Unora 2026

Obrazek 2: Nakres systému v rovnovazném stavu a sil ptsobicich na jednu z kouli.

pro télesovou vysku vzniklého jehlanu zase plati

3L2%2 —a?

V= 3

Zde jsme vyuzili vlastnosti rovnostranného trojihelnika — stfed jeho kruznice opsané (splyvajici

podminka na silu ndm tak dava

kq®V3

a
tga = —2 =

mg V3L2 —a?’

kde « je thel, o ktery se provazy odchyli od vertikdlni osy. Upravou a oznadenim b = a
ziskdvame kubickou rovnici

2

B 3"  9g'r? Y
16m2m2g2e?2  16n2m2g2el ’
2 2
mg .3 2
b +b—-3L"=0.
3k241 +

Tu miizeme vyfesit numericky na kalkulacce. Protoze jde o rovnici, ze které umime snadno
vyjadrit b, nabizi se ndm pouziti itera¢ni metody. Ta je zaloZena na tom, Ze rovnici upravime
do tvaru b = f(b), a potom opakované dosazujeme posledni{ spoéteny vysledek b’ zpét do
funkce f, dokud se vysledek neprestane vyraznéji ménit. Mdme dvé moznosti, jak to udélat —
bud si vyjadfime b z linedrniho, nebo z kubického ¢lenu. Kdybychom si b vyjadrili z linedrniho
¢lenu, velmi rychle bychom pfisli na to, ze dana posloupnost pri iterovani nebude konvergovat.
Vyplati se proto vyjadrit si b z kubického ¢lenu

3/C—=b
b= =10,
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kde
2 2
m-g- . —4
A =——=57184m ",
3k2q¢4
C=3L%=1,6875m>.

Na kalkulacce lze iteraci provést efektivné tak, ze si za b nejprve dosadime néjaky pocatecni
tip (napf. 0,1), vyraz vyéislime a kazdy vyskyt b na pravé strané rovnice nahradime kalkulac-

kovym ANS
C' — ANS
NS0 = )

kde ANS,, je vysledek po n-té iteraci (po n-tém zmdacknut{ =). Po nékolika iteracich tak dostdvame
b=0,2902m>.
Obsah trojuhelniku je potom

V3

S=Y2p=0,13m?.
4 )
Petr Sacher Viadimir Slanina
petr.sacher@fykos.cz vladimir.slanina@fykos.cz

Uloha EC ... zmenSeny Mésic

Ve filmu J4 padouch hlavni postava Gru zmensi Mésic a ukradne ho. Predstavte si, ze by Gru
misto kradeze Meésic jen instantné zmensil, a to tak, aby pro pomér nové a ptivodni hmotnosti
platilo m/M = 4/5; smér a velikost jeho celkové hybnosti by vsak zachoval a nechal by ho
vesele obihat ddle kolem Zemé. Jaka by byla jeho nova perioda obéhu 77 Uvazujte, ze Mésic
Zemi obihd po kruhové dréze o poloméru R = 3,844 - 103 m a Ze hmotnost Mésice je vyrazné
mensi, nez hmotnost Zemé.

Petr koukal na Mimoné.

Nejprve vyuzijeme zdkona zachovani energie, ktery mizeme pro zmenseny Mésic psat ve tvaru

1 2 GmM@
P - e

—m||v =F.

2
Protoze se bude zachovavat hybnost, muzeme urcit rychlost Mésice hned poté, co je zménéna
jeho hmotnost:
v = E%R
T m
Periodu T si zde muzeme vyjadrit z 3. Keplerova zdkona. Ten ndm rika, ze pro libovolné
téleso obfhajici kolem jiného (zna¢né tézsiho) télesa plati

2n
=MR—
muv R

3

% = konst. ,
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kde T je obéznd perioda a a je hlavni poloosa elipsy, po které téleso obihd. Nezndmou konstantu
si muzeme spocitat z toho, ze stejny vztah plati i pro kruhovou drahu, kdy se gravitacni sila
vyrovna s odstredivou a plati a = R; to popiSeme rovnicemi jako

=\, GmMy R GMg
T2 TR T2 4n2

2n 3/2 GMg (M)
T-_2" R — 4/ MY
i, - R \m

Diky tomu si mizeme vyjadrit kons‘cantuE E/m jako

E_1GMe (%)2_2
m 2 R m ’

V poléarnich souradnicich mizeme pro druhou mocninu velikosti rychlosti obecné psat

odkud dostavame

IvI? =7+ 7,

kde 72 a r2¢? jsou postupné okamzité velikosti radidln{ a ob&hové rychlosti. Mfzeme si uvédo-
mit, Ze v momentu, kdy se Mésic nachézi v perigeu nebo apogeu, je radidlni slozka rychlosti
nulova. V perigeu nebo apogeu tak mame ze zdkona zachovani energie rovnici

1 2.2 GmM, 23} 3.2 2F

—mr ——F—=F = r — —r—2GMg =0.

2 12 - 12 m ®

Vyjédfeme si nyni okamzitou thlovou rychlost ¢. 2. Kepleriv zdkon (resp. zdkon zachovani
momentu hybnosti) ndm ¥k, ze plati
1,, =mR°M

Fre= = konst.

a my si tak muzeme vyjadrit

,_2tMR* _ M.,/GMgR

T m r2 2

T m r2 m r

Kdyz toto dosadime do vztahu, ktery jsme dostali vyse ze zdkona zachovani energie v perigeu
nebo apogeu, dostavame pro r kvadratickou rovnici

. 2R (A)° R?
O

=0,

jejimz feSenim jsou
(M/m)? 9
(A R=1373-10"m

R=3,844-10m

T =

Vsimnéme si, Ze jeden z vysledki odpovida puvodni vzdélenosti Mésice od Zemé R — tedy
hned po zméné hmotnosti bude Mésic v perigeu. Toho jsme si mohli v§imnout uz diive, protoze

! Jedn se skuteéné o konstantu, protoZe se zachovavé energie.
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hned po zméné hmotnosti mél nulovou radidlni slozku rychlosti. Déle proto bude r oznacovat
pouze vzdélenost v apogeu; pak muzeme urcit velikost hlavni poloosy elipsy, po které Mésic
nové obihé, jako

_r+R 1 _ 16
T2 5 (M )2 T
Tento vysledek nyni muzeme dosadit do tretiho Keplerova zdkona
a3 _ GM@
T2 4n2

odkud vyjadfenim 7 dostdvame

3/2 3/2
. (E> T= (E) SRR = 9494,
7 7 G Mg

Riesenie vyuZitim rovnice vis-viva

Mesiac pred zmensSenim obiehal rychlostou

b 2R o 47°R*  GMg
0= T 0 — T2 - R )
kde sme pri upravach vyuzili 3. Keplerov zdkon
R  GMg
T g konst. .

Rychlost vy sa takisto zvykne oznacovat aj ako 1. dnikovd rgchlost.
Podla zadania sa pri zmenseni zachovava hybnost, teda pre hmotnost m a rychlost po
zmenseni v; plati
vim = voM .
Potom tpravami dostavame:
M 2 (M)2 2 (M)QGM@
V1 = —7o = v = | — Vo = | — .
m m m R
Pre pohyb po eliptickych a hyperbolickych drdhach plati rovnica vis-viva
2 1
Foom(2-Y,

T a

ktora udava vztah medzi vseobecnou vzdialenostou r od centralneho telesa s hmotnostou M > m
na orbite s velkou poloosou a (pre hyperbolické drahy mé této poloos zdporné znamienko)
a velkostou rychlosti v v danom okamihu. V nasom pripade obieha Mesiac okolo Zeme s hmot-
nostou Mg, v okamihu zmensenia mé rychlost v, a vzdialenost R od Zeme, preto plati

2 1\ _ 5 (M\?>GMg
e (7-a) == (%) 7%

a po uUpravach

_ R 16
o MmN 7
2- (%)
Tento vysledok je konzistentny s predchadzajicim postupom.
Petr Sacher Viadimir Slanina
petr.sacher@fykos.cz vladimir.slanina@fykos.cz
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Uloha ED ... antireflexni vrstva

Abychom zabranili tomu, ze se ndm od bryli bude odrédzet svétlo (coz napriklad nevypadd
dobre na fotkdch), miizeme na né nanést antireflexni vrstvu. Predstavme si, Zze chceme nanést
antireflexni vrstvu z materidlu s indexem lomu n = 1,38 na bryle s indexem lomu N > n.
Jakd musi byt nejmensi tloustka vrstvy d, aby se pri kolmém odrazu zadné svétlo neodrazelo,
uvazujeme-li pouze jeden odraz? Pocitejte s obvyklou vinovou délkou A\ = 550 nm.

Petr chce vypadat hezky na fotkdch.

Diky tomu, ze N > n an > ng se ndm pii obou odrazech — na skle bryli a na antireflexni vrstveé —
zméni faze o t. Kdyz pak budou spolu odrazené paprsky interferovat, bude fazovy rozdil vlivem
odrazu t—n = 0, diky ¢emuz nebude hrat roli. Potfebujeme, aby pfi prubéhu antireflexni vrstvou
vInén{ nabralo fdzové zpozdéni (2p+1)r, kde p € Ny — pak bude vlnéni proslé antireflexni vrstvou
a odrazené zpatky presné v protifidzi s tim, které se odrazi od antireflexni vrstvy a destruktivné
s nim zinterferuje. Pti prichodu antireflexni vrstvou paprsek urazi drahu 2d, optickd drdha
tedy bude 2dn. Potfebujeme tedy

2dnk = (2p+ 1) =,
kde k je vlnové ¢islo ve vakuu. To mizeme vyjadrit pomoci vlnové délky A jako

_2n

=

2
= 2dny = (2p+1).
Nejtenci vrstvu dostaneme, pokud bude fazovy rozdil nejmensi, tedy p = 0. Dosazenim za k,
p a vyjadfenim d pak mame

d= A =996 nm.
In

Petr Sacher
petr.sacher@fykos.cz

Uloha EE ... pevné spojena fyzikalni kyvadla

Meéjme dvé hiilky o délce | = 15cm, které obé visi za jeden svij konec a mohou se okolo
bodu zavéseni volné otacet. Tyto body zavésu jsou ve shodné vysce, jejich vzajemna vzdélenost
je rovna | a volné konce hulek jsou spojeny hiilkou také o délce l. Vsechny tri hilky maji
hmotnost m = 300g. Jakd bude perioda malych kmiti, pokud systém rozkyvame v roviné, ve
které hiilky lezi? Systém se nachazi v tihovém poli se zrychlenim g.

Lego zfyzikalnil svou ulohu.

Kedze ststava pozostava z troch samostatne pohybujtcich sa casti vykonavajicich rézny harmo-
nicky pohyb, nevyuzijeme bezny postup vyuzivajici pohybovi rovnicu, ale radsej sa zameriame
na energie. Vyjadrime si preto potencidlnu a kinetickii energiu ako funkcie vychylenia zvislych
paliciek ¢ a ich uhlovej rychlosti ¢.

Ked su visiace pali¢ky vychylené o uhol ¢ voéi zvislému smeru, st stredy (taziskd) dvoch
visiacich pali¢iek zdvihnuté o (1/2)(1 — cos¢) od rovnovaznej polohy a spdjajica palicka je
zdvihnutd o I(1 — cos ¢). Celkovo je potencidlna energia

2

E, = mgl (2% + 1) (1 —cosy) ~ 2mgl% ,
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kde sme rozvinuli kosinus do druhého radu Taylorovho rozvoja ako cos ¢ = 1 — ¢?/2.

Visiace palicky sa otacaji okolo svojho bodu uchytenia, okolo ktorého maji moment zotr-
vaénosti mi?/3, ¢ize ked sa pohybuji uhlovou rychlostou ¢, kinetickd energia kazdej z nich
bude
1ml2gb2 .

6
Spéajajica palicka sa neotéca, je cely ¢as vodorovne, tym padom staci pouzit vzorec pre translac-
nd kineticki energiu pre rychlost jej taziska. TazZisko sa pohybuje po kruznici s polomerom I
uhlovou rychlostou ¢, &ize rychlostou l¢. Potom kinetickd energia je (1/2)ml?p?. Celkovo je
kineticka energia

1 1 2.2 D 9.9
Fy=(=+= l = —ml .
b (3*2)’”“" 6" ¥

Teraz podla analédgie s linedrnym harmonickym oscildtorom upravime energie na tvar

1
EP = Ekefq2 )
1 .
Ey = Emefq27

¢im dostaneme, ze efektivna tuhost nasho kyvadla je ker = 2mgl a efektivna hmotnost mes =
= 5mi?/3. Kedze ako stradnicu pouzivame uhol, maji tieto dve veli¢iny rozmer direkéného
momentu resp. momentu zotrvacnosti. Kazdopadne zostdva dosadit do vzorca pre periédu ma-

Iych kmitov
Mef gmlz 50 .
T =2 =92 =2 — =0,71s.
T \ Kot " V' 2mgl T 6g (28

Nakoniec poznamenajme, Ze tloha sa dala riesit aj beznym postupom pre fyzikdlne kyvadlo,
pretoze pohyb jednotlivych komponentov je nezavisly od ich polohy. Mézeme si ich preto virtu-
alne presunit tak, aby boli ich osi otdCania v jednom spolo¢nom bode. Takéto vysledné kyvadlo
by malo hmotnost M = 3m a celkovy moment zotrvaznosti I = mi?/3+mi®/3+ml* = 5mi?/3
(kedze sa vodorovnd palicka neotdca, ma moment zotrvacnosti hmotného bodu). Vzdialenost ta-
ziska tohto kyvadla od spolocnej osi by sa spocitala ako priemer vzdialenosti tazisk jednotlivych
komponentov L = (I/2+1/2+1)/3 = 21/3. Tieto hodnoty opat sta¢i dosadit do tabulkového
vztahu a dostaneme rovnaky vysledok ako predchadzajicim postupom

I 51
T=2 —— =2 —
™ dgL ~ ™\ 69
Simon Pajger Jakub Kliment
legolas@fykos.cz jakub.kliment@fykos.cz
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Uloha EF ... uvnitf¥ zafivé koule

Predstavte si, Ze se nachdzite uvniti prdzdné sféry o poloméru Slunce R¢ ve vzdélenosti Re /2
od jejiho stredu. Stény sféry maji teplotu povrchu Slunce T' = 5800 K. Urcete velikost a smér
sily, kterou na vas pusobi tlak zareni vyzarovaného sténami. Své télo aproximujte kouli s pri-
fezem S = 0,70m? a s hmotnosti m = 70kg a predpoklidejte, Ze absorbujete n = 55%
dopadajiciho zareni. Uvazujte, Ze element sféry vyzaruje izotropne.

Vlado off-topicoval na vdnocnim posezeni.

Uvazujme element sféry, ktory vyzaruje izotropne. Intenzita ziarenia I tohto elementu klesd
podla zékona prevratenych Stvorcov, ktory hovori, ze I klesid s druhou mocninou vzdialenosti
od zdroja

—2
I xr

Sila, ktorou pésobi Ziarenie na teleso, je spdsobend zmenou hybnosti foténov pri zrazke
s danym telesom. Pri Gplnom pohlteni foténov ide o perfektne neelastickt zrazku a pri iplnom
odraze ide o perfektne elasticku zrdzku. Tlak Ziarenia P (sila ziarenia na jednotku plochy) bude
preto imerny zmene hybnosti foténov p, a teda

PO(ApO(pO(EfoténO(IO(T72

Tlak ziarenia, ktoré vyzaruje element povrchu gule je imerny 2. Pre presné odvodenie sily,
ktorou posobi ziarenie na teleso, by sme museli zohladnif geometriu telesa a vypocitat osobitne
vplyv pohlteného a odrazeného svetla, ale vsetky tieto efekty st vo vysledku tmerné P, cize
plati F' o« P o< 7~ 2. Této tloha je tym piadom matematicky ekvivalentna hladaniu sily, ktorou
posobi nabitd sféra na teleso v jej vnutri, ktoré je nabité ndbojom s rovnakym znamienkom.
Podla Gaussovho zdkona je tato sila nulova, teda

F=0N.

Vladimir Slanina
vladimir.slanina@fykos.cz

Uloha EG ... to je nejlepsi pirat, jakého jsem poznal

Jack Sparrow pluje rychlosti vy do pristavu na prodéraveélé lodi. Voda do ni vnika konstantnim
tokem Q, jeji celkovy objem je V a i s pirdtem m4d hmotnost mg. Zatim vodu stiha vylévat
ven pomoci védra, ale aby si zachoval svou pirdatskou auru, hodla s tim v jistou chvili prestat
a nechat lod volné doplout az k molu, nacez se lod potopi. V jaké vzdalenosti od mola ma vodu
prestat vylévat? Odporové sily neuvazujte. L Zrejme to tak je,“ ekl Petr.

Kvili tomu, zZe do lodi natéka voda, bude jeji hmotnost v ¢ase ¢ od ukonceni vylévani rovna
m(t) = mo + Qpt.

7 Archimédova zékona vime, ze vztlakova sila pusobici na lod je imérnéd objemu, ktery je pod
vodu ponoreny. Nejvétsi bude, pokud bude celd lod ponorend, tedy

Fnax = Vpg.

2Uplne odvodenie tohto vztahu je v ulohe odpudivé svétlo.
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Aby se lod nepotopila, musi maximalni vztlakova sila vzdy prevazovat tithovou, tedy musi platit
Vpg — (mo +Qpt)g > 0.
Z toho méame v meznim piipadé, kdy se sily pfesné vyrovnaji pro mezni ¢as 7', podminku

_ Vp—mg
PR

Za cas T od okamziku, kdy Jack Sparrow prestane vylévat natékajici vodu, musi lod prekonat
vzdalenost d a dorazit k molu. Nicméné, protoze méni svou hmotnost, bude se ménit i jeji
rychlost. Zakon zachovani hybnosti nam dava

T

mouo = m(t) v(t) ,
z ¢ehoz si pomoci znalosti m(¢) muzeme vyjadfit Casovou zavislost rychlosti lodi v(t) jako

u(t) =

movo
mo + Qpt

Tu ndm nyni staci jen zintegrovat od pocatecniho ¢asu 0 az do casu T. Mame

d= movo
o Mo+ Qpt
mo+QpT
1
u=mo+Qpt = d = v —du,
Qe Jp, U
movo mo+QpT
d= Qp [lnu}mg Qr s
coz ndm po dosazeni za T dava
d="0%, (Q) :
Qp mo

Jednou z chyb, kterou bychom mohli pfi reseni udélat, je predpokladat zachovani energie,
které ovsem neplati, tedy
1 2 , 1 5
§movo * va .
Je tomu tak proto, Ze voda se s lodi vlastné dokonale nepruzné srazi.

Petr Sacher
petr.sacher@fykos.cz

Uloha EH ... grilovany Riman po sicilsku

Archimédés mél iidajné na obranu Syrakus sestavit stroj z lesténych médénych zrcadel, ktery
mél zapalit nepratelské lodé.

Predstavme si takovy stroj, ktery se v nasi rekonstrukci sklada z médéného platu prohnu-
tého do tvaru paraboly dané rovnici ve tvaru n = né2, kde n je néjaky parametr. Velikost
parametru w, a tedy i zaméreni ,zrcadla“ mizeme ménit otacenim klikou, pricemz otoceni kliky
souvisi s parametrem r linearné jako n = ot + Yo, kde 9 je otoceni kliky v radidnech a o =
=2,0-10"°m™*'-rad~'. Nepritelskou lod je potieba zaméfit, tedy umistit do ohniska paraboly.
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Ta se k ndm piitom blizi rovnomérné piimocare rychlosti v = 15km-h™! a v &ase 1o = 0 je
zamérena ve vzdalenosti po = 1,0 km. Jakou rychlosti musime klikou otacet v case T = 3,0 min,
aby lod zustala zamérena?

Petr sledoval video o punskijch vdlkdch.

V prvni fazi bychom méli zjistit, jak souvisi vzdalenost ohniska ¢ s jedinym parametrem parabo-
ly, kterym je n. Pokud tuto souvislost nezndme, nevadi — odvodime si ji. Parabola je definovdna
jako kfivka, jejiz vSechny body jsou ve stejné vzdalenosti od ohniska ® a tzv. fidici piimky.
Zavedme si soufadnou soustavu [€, 7] s po¢dtkem ve vrcholu naseho zrcadla a s osou 7 smérem
k lodi. V nasi situaci pak ® lezf v bodé & = [0, ¢]. Ridici pfimka mé rovnici n = —¢, coz
jednoduse zjistime z toho, ze bod [0,0] od ni musi byt vzdileny ¢ a musi lezet pod parabo-
lou. Méjme bod na parabole A = [£, 7] a bod na Fidici pfimce kolmo pod nim B. Pro velikost

vzdélenosti | A| a |AB| plati
24] = /€ + (n— ),

JAB| = (n+¢) .

7 definice paraboly musi platit rovnost

|PA| = |AB] ,
kterd ndm pouzitim vztaha vyse, dosazenim za n a vyjadrenim ¢ dava
_ 1
Y= 4

Vzdalenost mista, kde bychom chtéli mit ohnisko, se v ¢ase vyviji jako

Y =$o — VT,
Dosazenim do vztahu pro ¢ vyse za nt zjistime, Ze plati
_ 1
YT L +00)

Mame tak rovnost 1

L(ad + o) 70
Vyjadrenim thlu pootoceni kliky ¥ mame pro ¢asovou zavislost

_ 1 _ Yo
I(r) = da(po —vT)

—VvT.

Abychom zjistili pozadovanou thlovou rychlost otdceni kliky w, sta¢i tuto rovnici zderivovat

podle ¢asu a mame
: v 1
4o (po — vT)

a dosazenim zadanych hodnot dostavame

w=083rad-s".

Petr Sacher
petr.sacher@fykos.cz
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Uloha FA ... hvézdodrap

Marek chce postavit v zemépisné sSitce p = 15° vézdk, ktery se bude dotykat hvézd. Jak musi byt
vysoky, aby zpomalil rotaci Zemé o 1%? Zemi uvazujte jako homogenni kouli o hmotnosti M,
ktera se touto stavbou nezméni, protoze hmotu Marek vytahne z bilé diry. Predpokladejme, Ze
hmota je po vytvoreni nehybna a pravé jeji roztoceni zpomall Zemi. Uvazujte dale, Ze tento
hvézdodrap je dost tenky, je homogenni a mé hmotnost m = 33 - 1074 M.

Marek se rdd divd na véci s nadhledem.

P1i stavbé vézaku se zachovd moment hybnosti Zemé L, ktery méla pred zapocetim stavby.
Plati

L=Juw= %Msz,

kde J je moment setrvac¢nosti Zemé pred stavbou, w jeji ihlova frekvence, M hmotnost Zemé
a R jeji polomér. Pouzili jsme vztah pro moment setrvacnosti homogenni koule.

Jaky bude moment setrvacnosti soustavy po stavbé? Bude se sklddat ze dvou ¢asti — Zemé,
ktera bude mit stejny moment setrvacnosti jako predtim, a pfid4d se moment setrvacnosti vézaku.
Spoctéme, jaky ma moment setrvac¢nosti homogenni ty¢ délkové hustoty A a délky [ okolo svého
stfedu, pokud je naklonénd o thel o = 90° — ¢ od osy otdceni, coz bude pravé piiklad naseho
hvézdodrapu.

Predstavime si, ze tyc¢ je slozena z malych c¢asti o délce dl. Jejich hmotnost bude dm = A dl.
Pokud uvazime souradnici z ve sméru tyce kolmo na osu otdceni, bude promitnuti délky dl do
tohoto sméru dz = dl cos ¢. Z definice pak moment setrvacnosti vézdku bude

lcosp/2 A
J‘/,:/xQdm: z2 dz =

1 2 2
— (M)
Clcospjz  COS® 12( ) cos”

a protoze m = Al je hmotnost tyce, tak pro ty¢ kolmo na osu otéceni dostaneme zndmy vzo-
rec (1/12)mi?, coz potvrzuje spravnost naseho vysledku.
Nase ty¢ md ale stfed hmotnosti ve vzdédlenosti d = (R + 1/2) cos ¢ od osy otdceni Zemé,
a podle Steinerovy véty bude proto jeji moment setrvaénosti okolo této osy J, = J., + md>.
Oznaéme thlovou frekvenci po stavbé w’. Mame pak celkovou rovnici

L=Jw=(J+ J),

2
Jw:(]+112ml2c05290+m<(R+;) (:os2t,o>>w'7
_1p 2_4(i_ )
0_3l +Rl+(R mcos2(p) \w’ 1 ’
3R 4 J 1 w
== _1+\/1_3(1_R2mc0s2(<p)(w’_1>> =

R 24 M R 8M
=2 (- 12— )= (- B
2 < 3+ \/9 + 495m cos? <p> 2 < 3+ 165m cos? ¢ 3) ’
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kde jsme vybrali fyzikdlné relevantni kladny kofen, v poslednim kroku jsme dosadili za J a vy-
uzili toho, Ze ze zadani w’/w = 99/100. Dosazenim za m a ¢ dostaneme [ = 1800 km.

Marek Milicka
marek.milicka@fykos.cz

Uloha FB ... kmitajici hmotna kladka

Meéjme homogenni kladku s hmotnosti m ve tvaru disku o polomeéru r. Tuto kladku zavésime
o strop tak, zZe na jedné strané je lano privazané primo o strop a na druhé strané pres pruzinu
s tuhosti k. Kladku z rovnovazné polohy potahneme o trochu nize. Jaka je perioda malych
kmita? Kladka po lané neprokluzuje. Pryj je malo kmiti, tak Lego navrhl.

V rovnovaznej polohe je lano napinané silou mg/2, a to je zaroven sila, ktorou fahd pruzina
lano.

Ked kladku potiahneme nadol tak, Ze sa jej stred posunie o x nadol, musi sa pruzina prediiit’
o Ay = 2z vodi svojej dizke v rovnovéznej polohe (pretoze na druhej strane sa lano vobec
neprediii). Bude tym paddom posobit silou o AFx = kAy = 2kx vysSsou oproti rovnovaznemu
pripadu, ¢ize Fx = mg/2+ 2kxz. A to je prave sila, ktorou je jedna strana kladky tahand nahor.
Nakolko sa jedna o hmotnu kladku, nevieme, akou silou je tahand nahor druhé strana, ozna¢me
si tato silu T'= mg/2 + AT (mohli by sme si tu silu oznadit iba ako T' a pocitat s fiou, avsak
tento rozklad je praktickejsi).

Potom celkova sila pdsobiaca na kladku je

F=F+T-Fy=mg/2+42kzx+mg/2+ AT — mg = 2kx + AT,

kde smer nahor berieme ako kladny. Zaroven je uz sndd jasné, preco je substiticia T' = mg/2 +
+ AT takd uzito¢né. Zrychlenie kladky potom bude a = (2kz + AT)/m.

Pozrime sa teraz na moment sily. Tiaz kladky m& vodi jej stredu nulovy moment. Land
na oboch strandch maji rameno sily r, avSak kazdé z nich roztaca kladku opa¢nym smerom.
Za kladny smer rotacie zvolime ten, pri ktorom strana kladky pod pruzinou rotuje nahor (na-
kolko to sa presne bude diat, ked kladka pdjde tymto smerom). Potom moment sily je

M =rF —rT 4+ 0F; = r(mg/2 + 2kz) — r(mg/2 + AT) = r(2kx — AT).
Moment zotrvac¢nosti disku je I = mr?/2, tym padom uhlové zrychlenie je

- M _ r(2kz — AT) 2kx — AT
I mr?)2 mr

Kedze sa lano na strane bez pruziny nepohybuje, je zrejmé, ze rychlost stiipania a obvodova
rychlost musia mat rovnaki velkost (pretoze kladka sa akoby kotila po lane, a to teda nahor).
Rovnaky vztah preto musi platit aj pre zrychlenie a ,,obvodové zrychlenie“

a=c¢r,
2kx + AT _22kmfAT

m m
2kx + AT = 4kx — 2AT

’

Angkx.
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Mozeme dosadit AT do zrychlenia a dostdvame

2kx+AT §k
m 3m

&o je rovnica linedrneho harmonického oscildtora s w? = 8k/(3m), takze periéda maljch kmitov
bude

Simon Pajger
legolas@fykos.cz

Uloha FC ... motokros derby

Tri motorkari Pepa, Vojta a Marek jsou i se svymi motorkami rozestaveni do tvaru rovnostran-
ného trojihelniku se stranou délky a. V ¢ase t = 0 se vsichni najednou zac¢nou prondsledovat
rychlosti vy, pricemz Pepa pronasleduje Vojtu, Vojta Marka a Marek Pepu. Nechtéji se ale sra-
zit v plné rychlosti, ¢im vic se k sobé tedy priblizi, tim vic budou zpomalovat. Jejich rychlost
bude proto primo umérnd vzéjemné vzdalenosti v(l) = (I/a)vo. Jak dlouho bude Vojtovi trvat,
nez se priblizi k Markovi na vzdélenost © (pokud © < a)?.

Kubo md doma uz treti motorku.

Ako prvé je potrebné si uvedomit, zZe pohyby vsetkych troch motorkarov budd navzajom syme-
trické vzhladom na stred povodného trojuholniku. Ich vzdjomné polohy budu preto stale tvorit
vrcholy rovnostranného trojuholnika, ktorého stred bude stdle na pé6vodnom mieste, avsak po-
stupne sa bude zmensovat dizka strany a menit jeho orientacia.

Obréazek 3: Schéma situacie s vyznacenymi trajektériami.

Pozrime sa na radialnu vzdialenost niektorého z motorkarov od stredu trojuholnika. V ca-
se t = 0 bude mat hodnotu ro = a/\/?:. Nésledne sa bude motorkir v tomto smere priblizovat
k stredu rychlostou v\/g/ 2 (priemet jeho rychlosti na radidlny smer). Bude preto platit
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Pokles hodnoty r(t) je teda priamo imerny jej okamzitej hodnote. Z toho vyplyva exponencidlny

pokles
3 Vo

r(t) =ro exp(—2 . t) .
Poziadavku na vzajomnu vzdialenost dvoch motorkarov rovnt « si vieme preformulovat na
zhodnost pomerov r/ro a x/a. Nésledne uz staci len upravit vzniknutd rovnicu a vyjadrit z nej
hladany cas ¢,

rt) :exp<,§@t> Lz

) 2a

Jakub Kliment
jakub.kliment@fykos.cz

Uloha FD ... kuZelovy kelimek

Uvazme kelimek ve tvaru dutého kuzele vysky h bez podstavy, jehoz vrcholovy thel je a.
Kelimek az po okraj naplnime tekutinou hustoty p. Protoze by takovy kelimek spatné stal dnem
doli, prudce ho otoc¢ime dnem vzhiiru a polozime na stiil tak, Ze ani trocha kapaliny nevytece.
Jaka vztlakova sila ptisobi na kelimek? Kapalina ve vrcholu vnitrku kuzele ma atmosféricky
tlak. Petr nasel tento pribéh ve vietnamské ucebnici.

Sila, kterou bude kapalina na kelimek pusobit je zpusobena hydrostatickym tlakem

p=z2pg,

kde z je hloubka, ve které se kelimek nachézi. Hydrostaticky tlak je ,dodatkem® k atmosfé-
rickému tlaku, ktery pusobi z vné na kelimek a kterym pak ptisobi kapalina nazpét. Kapalina
v uplné spicce kelimku tak pusobi na kelimek pouze atmosférickym tlakem. Protoze se tento
konstantni ptispévek odecte s vnéjsim tlakem, nemusime ho uvazovat.

Uvazme maly element vnitini plochy kelimku dS, sila, kterou na néj kapalina pusobi je dF' =
= pdS. OvSem, ze symetrie vidime, ze pokud se vSechny tyto infinitisimélni sily poscitaji,
radidlni slozky se navzajem vynuluji a zbyde jen sila ve sméru nahoru. Sta¢i ndm tedy uvazovat
jen primét dF ve sméru nahoru, pro ten mame z jednoduché geometrie

dFy = dF sin% .

Abychom dostali celkovou silu, musime zintegrovat

F:/dF¢.
S

Kelimek muzeme popsat dvéma cylindrickymi parametry z € (0,h) a ¢ € (0,2n), polomér
kelimku bude zévisld proménnd, pro kterou muzeme odvodit

«
R=ztg—.
2tg 5
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Poslednim krokem pted integraci je rozmyslet si, jak bude vypadat element plochy dS vy-
jadfeny v nami zvolenych souradnicich¥ Uvazime-li infinitisimalné maly Ctverecek vyfiznuty
z plasté kuzelu rozméru dx a dy, kde dz je ve vodorovné roviné a dy ve sméru k vrcholu, mame

dS =dzdy.
Vyjadreme nyni dx a dy pomoci dy a dz. Mame
dz = R(z)dy = ztg%dgp,

uvazime-li navic, ze dz je vlastné prumeét dy do vertikdlni osy, dostaneme

dy = 1adz.

COs 5

Kdyz predchozi vysledky dosadime do integralu pro F' a upravime, mame

h 27
F = | p(z)sin Q 4z dy = tg? gpg Z2dpdz.
s 2 2 o Jo

Nakonec tak dostavame 5
F= gnpgth(%) 5
Petr Sacher
petr.sacher@fykos.cz

Uloha FE ... rychlotoéna konvice

Marek ma tenkou tepelné nevodivou kulovou vrstvu o poloméru R a hmotnosti M plnou vody.
Kouli roztodi tak, ze voda vevnitr zistane nehybna. Koule se interakci s vodou zac¢ne zpomalovat
a po dlouhé dobé Marek zjisti, Ze teplota vevniti vzrostla o AT. Na jakou ithlovou rychlost
kouli roztocil?

Uvazujte, ze voda m4d konstantni hustotu p a mérnou tepelnou kapacitu c,. Kviili treni,
které taky zahriva vodu, se nezachova moment hybnosti. Marek se potloukal na matfyzu.

Rotac¢ni energie slupky se pfeméni na tepelnou, kterd ohfeje vodu. Rotacni energie je
1
Erot = §Jw2 ,
kde J je moment setrvacnosti kulové vrstvy. Pro tepelnou energii plati
4 3
Eiep = me AT = gnR pev AT

kde m je hmotnost vody uvniti.
Zbyva nam spocist moment setrvacnosti kulové slupky. Protoze je slupka homogenni, za-

vedme si plosnou hustotu
M M

S ~ 4nR?’

3To kromé uvedeného postupu miizeme odvodit nudné matematicky tak, Ze si spoéitdme normu vektorového
soucinu derivaci vektoru, kterym kuzel parametrizujeme, jak nas uci teorie plosného integrilu prvniho druhu.

44


mailto:petr.sacher@fykos.cz

Fyziklani 2026 20. roénik 13. Unora 2026

kde S je povrch slupky. Pfedstavime si, Ze kouli roziezeme ,vodorovné“ (kolmo na osu otééeni)
na tenké obruce, které jsou ve vysce z, kterd pijde od —R do R. Kazdy z nich mé polomér r,
ktery urcuje vzddlenost od osy otaceni, a vysku dz. Z Pythagorovy véty mdme r = v/ R? — 22
a plocha prstynku dS = 2nR dz. Hmotnost prstynku je

M dz

dm =o0dS = R

Jeden prstynek bude mit moment setrvacnosti

M
dJ =r*dm = (R* - 2°) ==d
r*dm ( z ) 55 4
abychom spocetli celkovy, musime prescitat, presnéji vyintegrovat, pres vSechna z, tedy
_ M "
2R | »

(R? - 2%) dz M (2R3 - %Pﬁ) —ZuR?.

4 T 2R 3

Zbyva dosadit do vzorce pro energii a dostdvame
Erot = Etep )

%MR%JZ = %nRch\,AT,

nRpc, AT
=24/ —.
YA T

Marek Milicka

marek.milicka@fykos.cz

Uloha FF ... definiéni

Uvazujme homogenni ty¢ postavenou na zemském povrchu svisle vzhiru. Jaka musi byt dél-
hmotného stredu?
Népovéda: Mohlo by se vdm hodit, Ze pro mald = plati In (1 + z) ~ ¢ — 2?/2 + 2 /3.

Marek rozjimal o své viysce.

Stfed hmotnosti homogenni tyce je v jejim stfedu, tedy ve vysce ys = L/2 nad zemi.

Tézisté je vazeny prumér vzdélenosti pres kousky tyce, kde vahy jsou sila ptisobici na dany
kousek. Protoze je ty¢ homogenni, ma konstantni linedrni hustotu, hmotnost na metr dél-
ky A = M/L, kde M je hmotnost tyde a L jeji délka. Gravitaéni sila pusobici na kousek
o hmotnosti dm je

Mz dm GMz)\ dr

’
r2 r2

dF, =G

kde r je vzdalenost daného kousku od stfedu Zemé, Mz je hmotnost Zemé a dr je délka daného
kousku.
Véazeny prumér pres kousky je pak

. :frng: If“ﬂ"%dr
P deg f:JrL%sz )
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kde R je polomér Zemé. Spoctenim integralu dostaneme

1 R+L
rp = ln L. :R(RL+L)IH(1+%).
R~ R¥L

Abychom se dopocetli vysledku, pouzijeme Tayloruv rozvoj logaritmu, protoze bude jisté pla-

tit L < R. Pak plati
( L) L L2 L3
n(l+=)~=—-=—+

R R 2R? ' 3R3°
Dosadime
o BRAL) (L L2 LY
P L R 2R? ' 3R3
L L L?
= 14+ = 1— —/ 4 =
(+R)( 2R+3R2)
L I?
~R+§—ﬁ,

kde jsme v poslednim kroku zanedbali ¢leny nejvyssiho fadu v L/ R. Podivejme se na vysledek —
vyska tézisté je témér ve vysce R+ L/2 nad stfedem Zemé, jako stfed hmotnosti, jediny posledni
clen déla rozdil a ten mé pravé byt jeden metr.

Dosazenim dostaneme L = 6,2 km.

Marek Milicka
marek.milicka@fykos.cz

Uloha FG ... novi lampa

Vlado si koupil novou lampu, ale jak uz to v posledni dobé byva, k novym zarizenim vam daji
jenom kabel bez adaptéru. Vlado ma k dispozici U = 24V adaptér, ale nominalni napéjeni nové
lampy je Uy, = 12 V. Rozhodl se tedy, ze ji k tomuto adaptéru napoji pres potenciometr, ktery
zapojil jako napétovy déli¢. Uvazujte, Zze lampa m4 mit prikon P, = 12 W. Vlado mysli na pla-
netu a chce tcéinnost celé soustavy alespori n = 40 %. Vypoditejte celkovy odpor potenciometru,
pri kterém obvodem prochazi nejvyssi proud.

Viada (ne)osvitilo.

Oznacme si celkovy odpor potenciometra ako R, odpor Casti potenciometra v rozvetvenej casti
obvodu ako Rx (obr. E? a odpor lampy ako Ry, = UE/PL = 12Q. V oboch vetvach je rovnaké
napétie Uy, preto podla 1. Kirchhoffovho zdkona plati

U, UL

I=—+—=—. 3
Ry, * Rx )

Celkova uc¢innost obvodu je rovnd pomeru vykonu lampy P, a vykonu zdroja P, teda
v
P.  m Uf
=—==— = I= .
"= T UrI nURy,
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7Z tohto vztahu vyplyva, ze najvacsi prud, ktory moze pretekat obvodom nie je ovplyvneny Rx
ani R. Naopak je nepriamo timerny 7, preto najvacsi prad dosiahneme pre najmensiu mozna
hodnotu 7 = 0,4.

Po dosadeni do vztahu (E) ziskavame

Ui _ U, U
77URL - Ry, Rx ’
Ry,

RX:E:%Q.
U

Castou potenciometra s odporom R — Rx musi tak isto pretekat prid I. Celkové napitie
v obvode je U a napétie v jeho rozvetvenej casti je Uy, preto je podla 2. Kirchhoffovho zakona
napétie na danej ¢asti potenciometru U’ = U — UL = 12 V. Podla 1. Kirchhoffovho zdkona dalej
plati

v U, U
R—Rx R. Rx’
a teda )
U’ nU nUL .
R:Rx+”:(1+ =576 =580Q.

R—‘}:—FR—; P, U —nU

U

|
Rx R—RX
° 1 ° 1
| I |

Ry,

Obrézek 4: Schéma zapojenia lampy s potenciometrom.

Vladimir Slanina
vladimir.slanina@fykos.cz

Uloha FH ... ledova bublina

David se dival kolmo na mydlovou bublinu (pro jednoduchost uvazujte, Ze je tvorena pouze
vodou), kterd se mu diky interferenci jevila jako zelend Ao = 550 nm. Protoze byla venku ale
opravdu zima, bublina zacala mrznout. S jakou vInovou délkou uvidi David zamrzlou bublinu?
Uvazujte, ze vnitrni primér bubliny je po celou dobu 2r = 10,0 cm a Ze David pozoruje jenom
prvni interferencni rad. Index lomu ledu je ny = 1,31.

David si zaloZil Instagram a nasel video o zamrzajici bubliné.
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Nejprve uréime tloustku bubliny z interference na tenké vrstvé. Chceme-li interferenéni ma-
ximum, pak pozadujeme, aby byl m-ndsobek (nazyvdme fdd interferenéniho maxima) vlnové
délky roven optickému drahovému rozdilu. Protoze nas ale zajimé odraz, potfebujeme, aby to
byl polociselny ndsobek Ag kvili zméné faze o t na odrazu. Obecné se muze paprsek pohybovat
ve vrstvé pod néjakym thlem 6. Pro konstruktivni interferenci pak plati

Ao <m+ %) = 2dn cosf,

kde d je tloustka vodni vrstvy, n jeji index lomu a 6 je tthel paprsku od kolmice v misté, kde
David interferenci pozoruje. Protoze se David divd na bublinu kolmo, cosf = 1 a vzorec se

redukuje na
1 Ao 1
) =2 = — —.
Ao (m+2) dn = d=q (m+2)

Nyni musime urcit, jak se zméni tloustka d tim, ze voda zméni skupenstvi. Pro objem kulové
slupky plati

4 3 3
V=§Tc[(R)—r] ,
kde r je vnitfni polomér a R je vnéjsi polomér. Dale musi platit zdkon zachovani hmotnosti
Vip="Vipr,
4 3 3 4 3 3
3" [(r—i—d) -7 ]p: 3" [(r—i—dl) - }ph
(r+d) =17) p=((r+di)* = %) pn,
(3T2d + 3rd? + d3) p= (3T2dl + 37"d12 + d?) o1 -

Ze zadéni vime, Ze r = 5cm, a tudiZ vyuzijeme aproximaci 3rd? + d® ~ 0, protoze d,d; < r.
Zjednodusime tedy rovnici na

3r’dp = 3r’dipy = di = arl ;
Pl
coz dosadime zpét do druhé rovnice a dostaneme
1
A (m1 + 7) =2d%n,.
2 Pl
Déle vyuzijeme vztah d a Ao

1 )\0 1 14
—)=2— -] =n.
)\(m1+2) 2n (m+2) plm

A vyuzitim faktu, ze David uvidi stejny interferen¢ni rad m = m; = 1, dostaneme

A=A P - 588nm.
n pi

David Skrob
david.skrob@fykos.cz

48


mailto:david.skrob@fykos.cz

Fyziklani 2026 20. roénik 13. Unora 2026

Uloha GA ... protigravitaéni

Marek ma dva kuzely o vysce h a vrcholovém tihlu « slepené podstavami
k sobé. Umisti je horizontalné doprostied mezi dvé dlouha drivka, kterd
spolu sviraji thel f a lezi v roviné s dhlem sklonu . Obé drivka maji
vzhledem k horizontalni roviné stejny sklon. Marek prekvapené sleduje,
jak se body dotyku kuzel s diivky pohybuji nahoru. Jaky nejmensi miize
byt tihel a?

Marek povazoval zdkon gravitace za prilis prizemns.

Pri posunu vzhiiru se sice ,zveda celé téleso“, protoze body dotyku kuzeli a diivek stoupaji,
body dotyku budou stoupat, tézisté musi ve vysledku klesat, tedy druhy efekt musi byt silnéjsi
nez prvni. Protoze hleddme krajni hodnotu, omezime se na pripad, kdy jsou efekty stejné silné.

P1i vodorovném posunuti o vzdalenost = se body dotyku kuzele s diivky zvysi o hstoupani =
= ztg(y). Zaroven se pii takovém posunuti posune kuzel v roviné diivek o xsec(y)® a mezera
se proto rozsif{ o 2z sec(y) tg(8/2). Pokud u naseho télesa zvétsime mezeru mezi body dotyku

L) (5)
cos()

Aby se kuzely mohly hnout nahoru, musi v krajnim ptipadé platit

hpoklcs =

hstoupéni = hpokles )
a  sin(y)

tg - = .

2 w(3)

Pro thel a pak musi platit
sin(7y)

tg (%)

a = 2arctg

Marek Milicka

marek.milicka@fykos.cz

Uloha GB ... nepriuihledné sklo

Meéjme sklo tloustky d, které obsahuje tmavé barvivo, diky kterému pohlcuje cast proslého
svétla. Uvazujme, ze absorpcni koeficient zavisi linedrné na koncentraci barviva ve skle jako y =
= aw, kde w je koncentrace. Mame-li sklo, ve kterém je vlivem vyrobni chyby na povrchu
standardni koncentrace barviva, ale pak se linedrné zvysuje o Aw = Pz, kde = je hloubka
meérena od povrchu, kolikrdat méné svétla projde? Petr premyslel, zda vibec néco wvidi.

Vime, ze nezavadné sklo ma konstantni absorpcni koeficient yp = aw. Mzeme tak vyuzit empi-
rického Beer-Lambertova zdkona, ktery nam rikd, Ze intenzita svétla pri prostupu homogennim
materidlem klesa exponencidlné jako

I(z) = Ipe ™™ = Ipe "™,

4Funkce sec(z) = 1/ cos(z).
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V pripadé nehomogenniho materidlu (tedy proménné koncentrace barviva v zdvadném skle)
k problému musime pristoupit slozitéji. Beer-Lamberttiv zédkon si mizeme vyjadrit v diferenci-
alni podobé

dI(z) = —Ip(z)dz,
protoze p zavisi linedrné na koncentraci, v nasem pripadé mame
dI(z) = —I (aw + afz) dx .
To je jednoduchd diferencidlni rovnice, kterou muzeme vyftesit separaci proménnych.

#:*(anra,Bx)dx = lnI:f/(anraﬁx)d-’E

Inl =— (awx—i— %ﬁmg) +C

I=1 exp(— (ozwa: + %xz))

Oznacime-li intenzitu proslou celou nezédvadnou destickou jako I a intenzitu proslou celou
zévadnou destickou jako I’ (uvazujeme stejnou po&ateéni intenzitu), dostdvame pro jejich pomér

Petr Sacher
petr.sacher@fykos.cz

Uloha GC ... tak to zmé&F

Pepa chtél vzdy zit jako 2D bytost na disku. Po dlouhém snazeni se mu to konecné podarilo.
Na oslavu svého tspéchu se rozhodl, Ze si ve své plose zméri polomér disku, na kterém Zzije,
pomoci 2D hlinikového pravitka.

Pepa ma ale zakerného kamarada Vojtu, ktery mu jeho tuspéch nepral, a tak jeho svét
umistil na sporék tak, Ze od stiedu disku klesa jeho teplota exponencialné s polomérem podle
predpisu tvaru t(r) = t, + Ae™"" od tmax = 160 °C aZ do tmin = 60 °C na jeho okraji, kde t, =
= 20 °C oznacuje pokojovou teplotu.

O kolik procent bude polomér méreny z pohledu Pepy mensi nez skutecny polomér desky
meéreny Vojtou? Uvazujte, ze Vojta ma dokonale pevné pravitko a Pepa ma pravitko s konstantni
tepelnou roztaznosti o = 2,4 - 107° K™, které spradvné méri délku pii pokojové teploté t,.

Pepa byl zoufaly.

Najprv si predstavme, zZe sa snazime merat dizku na mieste s teplotou ¢ hlintkovym pravitkom
s najmensim meratelnym dielikom dizky zo. Ak by tato teplota bola rovna izbovej teplote to,
tak by nam stacilo jednoducho spocitat pocet elementarnych dielikov pravitka N, ktoré me-
rany tsek zaberd. Z toho by sme uz vedeli urcit dizku meraného tGseku ako Nzo. Aviak ked
je teplota daného miesta odlisna od izbovej teploty, tak sa celé pravitko a rovnako aj jeho
elementérny dielik predizia (respektive skratia) na (1 + a(t — t,))nasobok povodnej dizky. Na-
miesto N elementarnych dielikov ndm merany tsek pokryje N/(1 4+ «(t — tp)) elementdrnych
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dielikov. K tomuto poétu priradime dizku Nzo/(1 + a(t — t,)) namiesto dizky Nzo, teda na-
meriame dizku (1 + a(t — t,))krat mensiu oproti skutoéne;.

Vratme sa teraz k situdcii zo zadania. Meriame polomer disku, ktorého skuto¢ny polomer
je R. Jeho teplota klesd exponencidlne s polomerom podla predpisu ¢(r) = tp, + Ae™*" 7 teplo-
ty tmax na teplotu tmin. Uréme najprv z uvedenych informécii hodnoty nezndmych konstant A
a k. Pre r = 0 m4 platif t = tmax, takze po dosadeni do predpisu pre teplotu dostavame

tmax:tp+A7

odkial vieme lahko vyjadrit konstantu A ako A = tmax — tp-
Na okraji disku naopak méme r = R a t = tmin, takze

tmin = tp + Ae "

Po dosadeni A = tmax — tp a Gpravach postupne dostdvame

tmin - t —
P _ e kR7
tmax - tp
1 tmin -1
k=——ln-mn—
R tmax - tp

Zavislost teploty od polomeru sa tak upravi na
r/R
tmin —t
Hr) = by + (max — 1) (2222 )
tmax - tp

Predstavme si teraz meranie polomeru tohto disku od jeho stredu po okraj hlinikovym
pravitkom. Dlzka elementarneho tiseku polomeru so skutoc¢nou dizkou dr, ktord v tomto pripade
nameriame vo vzdialenosti r od stredu disku, bude

dr

dr’ = TR -
14 o (tmax — tp) (M)

tmax—1lp
Polomer, ktory nameria Pepa, potom bude

R
R _/ dr
- r/R°
0 tm;rtp> /

1+a@mm—%)(

tmax—1p

Pre zjednodusenie spravime substitticie f = a (tmax — tp); B = (tmin—tp)/(tmax—tp) a © = 7/R.
Po dodato¢nom vyjadreni dr = Rdx prejde tento integral do tvaru

R' =R 14—i——dm
), 1+8Bs

Ked si teraz trikovo rozpiseme jednotku v ¢itateli ako 1+ B* — BB®, tak sa tento vyraz upravi
na ) )
B® BB
H:R/ - BB M:RfR/————a
) < 1+ 8B° , 1+pB*
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Po substitiacii v = 1 + SB*, z ktorej vieme vyjadrit du = SB* In B dz, ndm potom ¢len SB*
v Citateli vypadne a dostaneme jednoducho
R [ dqu R . 1+8B

R =R-— —=R-——=In
In B 148 U In B 1+2

Pepa oproti Vojtovi nameria polomer mensi o

R—-R 1+a(tmin_t ) tmin — € .
=1 PL /1 2 =0,19%.
R P e — b)) ™ e — 8y, 107
Tomads Kubricky
tomas.kubricky@fykos.cz
Uloha GD ... pfevracime kvadr
Uvazme duty kvadr s podstavou o stranach a = 50,0cm a ¢ = /v

= 30,0cm a s vyskou b = 30,0 cm. Stény kvadru maji zanedba-
telnou hmotnost, ale cely jeho objem je naplnén vodou a ku-
latou béjkou o poloméru r = 8,00 cm zhotovenou z materidlu
o hustoté po = 350kg-m~2. Béjka je pomoci nehmotného a bez-
objemného provazku délky | = a/2 — 2r uchycena uprostred
podstavy kvadru. Jakou praci musime vynalozit na prevraceni
kvadru okolo hrany c? Uvazujte, ze prevraceni provadime velmi
pomalu.

Petriv kvddr udélal bum bdc.

Nejprve si vhodné zvolime na$i soustavu souradnic. Ukéze se vyhodnym, pokud si ji zvolime
tak, ze pocatek bude lezet uvnitt hrany, okolo které kvadr otdcime, osy « a y budou postupné
v horizontdlnim a vertikalnim sméru; kladny smér osy = bude smérem ke kvadru. Ulohu ndm

_ Zz MiTij
Zi m;i

kde m; jsou hmotnosti téles, ze kterych se systém skladd a x;; je j-ta4 souradnice tézisté i-

tého télesa. Jinak feceno, tézisté je vazeny priumeér souradnic tézisti dil¢ich téles, kde vahy jsou

tj

1a’bep — %mﬁa (p— po)
abep — 5773 (p — po)
Lab*cp — %mﬁ (% — r) (p— po)
abep — 5773 (p — po) '

ty =

ty =

Nezndme, kde presné se nachézi tézisté vody v kvadru a tak jsme vyuzili nasledujici trik — uvazili
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a k nému jsme pricetli téleso stejného tvaru a polohy jako mé bdjka s (ryze formalné) zdpornou
hustotou —p. K tomu pak stacilo pfipocist skutecnou béjku s hustotou po.

Predstavme si nyni kvadr poté, co ho za¢neme nakldpét. V ném bude diky vztlakové sile
béjka vzdy napnutd smérem nahoru. Parametrizujme si vSechny polohy tihlem néklonu kvadru

v 1 (acos ¢ — bsiny) abep — %nrsacoscp (p— po)
’ abep — 573 (p — po) ’
, %(asin(p—l—bcosg&)abcp—%nr?’ (%—l—%singp—r) (p— po)

abep — 53 (p — po)

Nynf uréime mezn{ thel pn. Mizeme ho uréit dvéma zptisoby, bud pomoci derivace t;, podle ¢
nebo z podminky t,, = 0. V obou piipadech dostaneme

a 4 3 1 Po . o
M = arctg(b — gm“ e (1 — p)) = 58,27 .

4
W=AE=g (abCP - gﬂTS (p— PO)) (ty (pm) = ty)

Pro praci pak mame

coz lze dale upravit na

W= <\/(abc gt (1 22))" 4 (420)° - b2c> =595

2

Petr Sacher
petr.sacher@fykos.cz

Uloha GE ... sitova

Vv

mace, slouzi LED dioda. Ta se nachazi ve stredu trubice o priméru D = 62,5um a s indexem
lomu n = 1,48 a svit{ izotropné (do vSech sméri stejné). Pro jednoduchost predpoklddejte, Ze
se kolem trubice nachazi vzduch a celd opticka linka je dlouha | = 1,00 km. Vypocitejte stredni
hodnotu casu, za které prijdou paprsky vyslané v tom samém okamziku na konec kabelu. Uva-
zujte jenom paprsky, které dorazi do cile. Viado se na predndsce z pocitacovijch
siti zamyslel nad tim, pro¢ se multimode kabely pouZivaji jen na pomerné krdtké vzddlenosti.

Uvazujme jeden la¢, ktory LED diéda vyziarila pod uhlom ¢ voci osi kdbla. Odvodme najprv
podmienku, aby 14¢ na hranici kdbla nevysiel z kdbla von, ale iba sa odrazil. Pri dopade na

rozhranie bude tento 14¢ zvierat s kolmicou uhol /2 — ¢. Z toho dévodu, aby doslo k uplnému
odrazu, musi platit

. (T . T
nsm(§ ,(p) :ncosg0>nosm§ ~1,

53


mailto:petr.sacher@fykos.cz

Fyziklani 2026 20. roénik 13. Unora 2026

kde sme vyuzili goniometrickd identitu sin(n/2 — z) = cosz a tiez index lomu vzduchu ng ~ 1.
Po tprave a uvézeni toho, ze funkcia kosinus je na intervale (0, /2) klesajica, dostdvame pre
uhol ¢ podmienku

1 . °
p < arccos(g> = m =475 (4)

Lice vyziarené pod vacsim uhlom ¢, sa sice tiez do istej miery budd odrazat, avsak ich in-
tenzita sa pri kazdom odraze znizi, a tak vo vysledku bude ich vplyv na signél prijaty na druhom
konci kabla pri velkej vzdialenosti zanedbatelny, preto s nimi vo zvysku riesenia nepocitame.

Pri splnen{ podmienky (4) bude ¢ po kazdom odraze zvierat s osou kébla stale uhol .
Vdaka tomu dojde k tplnému odrazu aj pri dalsich odrazoch, kedZe 1i¢ bude s rozhranim kabla
a vzduchu zvieraf stile ten isty uhol. Informécia sa v kabli s indexom lomu n bude pritom
§irit rychlostou v = ¢/n. KedZze uvedeny li¢ neustdle zviera uhol ¢ s osou kdbla, tak namiesto
diiky kébla [ musi prejst v skuto¢nosti vzdialenost x = I/ cos ¢. Potom na druhy koniec kabla
informacia dojde za cas

Hp)=—=

T nl
v ccosg

Pre urcenie strednej hodnoty tohto Casu potrebujeme este urcit, akd cast vSetkych licov
spitiajicich podmienku ({f) bude vyZiarend v nejakom malom intervale uhlov (¢, ¢ 4+ dg). Ked
si predstavime pomyselni sféru s polomerom R so stredom v LED diéde, na ktorej povrch budia
dopadat rovnomerne vyziarené lice z LED diédy, tak ndm vlastne staci urcit pomer obsahu casti
sféry zodpovedajicej tomuto intervalu a obsahu Casti sféry zodpovedajicej celému pripustnému
intervalu uhlov (0, pm). Cast sféry zodpovedajiicu malému intervalu uhlov (p,¢ + dp) tvori
tenké medzikruzie s vnitornym polomerom Rsin ¢ a hrubkou Rdy, takze s obsahom

dS = 2nRsingp - Rdp = 2nR’sin o de.

Obsah casti sféry zodpovedajicej celému pripustnému intervalu uhlov (0, ¢ ) uréime teraz ako
®m
S = / 2nR? sin p dp = 2nR* (1 — €O Ym)
0

Podiel lucov, ktoré spadaji do malého intervalu uhlov {p, p + de), je teda

dS _ sinpdp
S 1—cospm

Teraz mozeme vyjadrit stredni hodnotu casu t. Ak by sme mali len koneény pocet pri-
pustnych uhlov ¢, strednd hodnota ¢asu ¢ by bola vazeny priemer éasov t(y) prislichajicich
jednotlivym pripustnym uhlom ¢, kde vdhami by boli podiely poc¢tu licov vyziarenych pod
danymi uhlami. V spojitom pripade plati podobny vztah, akurdt namiesto sumy vo vazenom
priemere potrebujeme pouzit integral. Zaroven musime podiel lic¢ov vztahovat nie k jednej kon-
krétnej hodnote ¢, ale k nejakému malému intervalu uhlov (p, ¢ + dy) tak, ako sme to vyssie
robili. Strednd hodnota ¢asu ¢ tak v nasom pripade bude

() = mnl sinpdyp nl #m sinapd
B o ccosgp 1l —cosgm  c(1 —cosm) o COsyp v
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Pre dopocitanie integralu tangensu sa oplati spravit substitiiciu u = cos ¢, kedze potom ndm

po vyjadreni dp = — du/ sin ¢ sinus z integralu vypadne. Vztah pre strednii hodnotu sa upravi
na
—nl osEm —nl n?l
)= —""""—" —dy= ——1 3 Pm) = — 1 =5,97us.
® ¢ (1 — cos pm) /1 u ¢ (1 — cos pm) 0 (c08 ¥m) c(n—1) n(n) be

Tomads Kubricky
tomas.kubricky@fykos.cz

Uloha GF ... nerozliSitelné plyny

Ve vakuové komore se za nizkého tlaku nachdzi smés dvou plynii — dusiku a oxidu uhelnatého,
pri¢emz c¢ast z nich je ionizovand. V hmotnostnim spektrometru miizeme urcovat plyny podle
pomeéru jejich naboje a hmotnosti. Relativni molekulovd hmotnost obou plynii je ale velmi
podobna, priblizné M = 28, a nds spektrometr nemd dostatecné rozliseni na to, aby je rozlisil.
Cdst dstic je ale ionizovand dvakrat, coz se projevi jako signal na pozici M = 14. Uéinny prifez
dvojnasobné ionizace ku jednondsobné je pro CO v poméru 0,015 ku 1, u Ny je to 0,090 ku 1.
Pomér uc¢inného prurezu prvni ionizace Ny ku CO je pak 0,83. Koncentraci obou plynii bychom
radi urcili z intenzity detekovaného signdlu na danych pozicich. Ta se méri jako zesileny proud
iont1, které dopadnou na detektor. Na pozici s molekulovou hmotnosti 28 je Isg = 210uA,
na pozici 14 je pak I4 = 10,5uA. Urcete pomér koncentrace oxidu uhelnatého ku dusiku.
Neuvazujte jejich vzajemné interakce. Dneska na predndsce, dneska na vijbéru.

Ve hmotnostnim spektrometru jsou jednotlivé castice ionizovany, aby mohla byt ptsobenim
elektrickych a magnetickych poli ovlivnéna jejich drdha tak, abychom jednotlivé ¢astice dokéazali

s vz

rozlisit. Na nabité ¢astice totiz pusobi Lorentzova sila
F=ma=e¢e(E+vxB),

kde E je vektor elektrické intenzity a B vektor magnetické indukce. Zrychleni, a tedy i nasledna
trajektorie, tak na polich zdvisi{ s konstantou imérnosti e/m. Pokud tedy nabijeme Castice na
stejny naboj, jejich trajektorie jsou ovlivnéné jejich hmotnosti. Proto je miZzeme separovat na
zdkladé poméru m/e. Dvakrat ionizované Castice se pak ve spektru jevi jako ¢éstice s poloviéni
hmotnosti.

Podle zadani tedy ve spektru vidime, ze detekujeme za jednotku Casu néjaky pocet c¢astic
s hmotnosti 28, a jiny pocet na pozici 14, coz odpovida dvojnasobné ionizaci téchto molekul.
Ozna¢me parcidlni tlak dusiku pn, a parcidlni tlak oxidu uhelnatého pco a u¢inné prifezy
prvni ionizace pro dusik o1,x, a o1,co stejnou velic¢inu pro oxid uhelnaty. Pak intenzitu signalu
na pozici 28 mizeme vyjadrit jako

Is =k (Jl,szN2 + Cf1,copco) s

kde k je konstanta timérnost mezi poctem detekovanych ionti a celkovym poctem ionti. In-
tenzita je v nasem pripadé rovna proudu, protoze mérime pocet detekovanych nabitych castic,
tedy vlastné prosly nédboj. Podobné pak mizZeme vyjadrit intenzitu na pozici 14 jako

I = 2k (02,x,PN, + 02,00pc0)
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kde ¢islice 2 pred celou zavorkou vyjadfuje, ze jeden iont nyni nese dvojndsobny naboj.
Prvni rovnici vydélime druhou a upravujeme

Is _ 101N,PN, +01,c0PCO

b
La  202N,pN, + 02,cOPCO

P
o1,N, + 01,0022
2128 2 PN,
L
Ly o2, + 02,0592
PN,
I2g pco pco I2g
2——o03,c0—— —01,cO—— = 01N, — 2702, ,
I14 DN, DN, Ii4
_ 2Isg
bco _ 1N, Try 92N,
= = ,
PN, 27%%02,c0 — 01,00
_ 2l 72,N,y
pco 0'1,N2 I14 71,N,
- Izg 92,CO :
N 01,co 2728 = -1
PN, ’ I14 01,cO

Nyni uz nam staci jen dosadit za poméry uvedené v zadani a dostavame
21
Pco 11248 0,09-1
BT g0
pN2 — H0,0 5

)

Oxidu uhelnatého je tedy v této atmosfére vyrazné vice nez dusiku.

Jaroslav Herman
jardah@fykos.cz

Uloha GG ... odpudivé svétlo

Urcité se vam uz stalo, zZe jste vysli z malo osvétlené budovy a najednou vas oslepilo Slunce.
Vypocitejte, jakou silou piisobi Slunce na Zemi svym zarenim. Predpokladejte, Ze je zemsky
povrch tvoreny pouze vodou, coz znamena, Ze se zlomek o = 0,31 veskerého dopadajiciho zareni
perfektné odrazi od povrchu a zbytek je pohlcen.

Viado vysel ze skoly a rovnou se otocil zpdtky.

Riesenim tlohy je stcet dvoch efektov — v prvom uvazujeme, Ze sa 1 — a foténov pohlti, a v dru-
hom, Ze sa « fotonov od Zeme odrazi ako od zrkadla.

KedZe je Zem rotacne symetrické okolo osi danej spojnicou Slnko-Zem, tak si mézeme tlohu
parametrizovat uhlom ¢, ktory zviera spojnica stredu Zeme a bodu na jeho povrchu so spojnicou
Slnko-Zem. Tieto body maju ta vlastnost, ze na dané miesta na Zemi svieti Slnko pod rovnakym
uhlom, a to ¢ od kolmice na povrch. Body na povrchu gule, ktoré sa nachddzaji medzi uhlami ¢
a ¢ 4 dp vytinajui na povrchu Zeme plochu dA = 2nRg sin ¢ - Rg de.

Interakciu foténov a Zeme vieme modelovat ako zrazky. V prvom pripade je 1 — « foténov
neelasticky pohltenych Zemou, teda ich hybnost sa zmeni o Ap; = 0 — p = —p. V druhom
pripade dojde k elastickej zrazke podla zakonu odrazu, pri ktorej sa zmeni len zlozka hybnos-
ti p1, ktord je kolmé na povrch v mieste odrazu. Hybnost « foténov sa tym padom zmeni
oAp:=(p;—pL) - (pj+PL) =—2pL.
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Nésledne si vyjadrime hybnost fotonov cez vykon P, ktorym ziari Slnko na Zem vo vzdia-
lenosti Zeme. Pre hybnost N foténov, ktoré na Zem dopadni za ¢as At a s vinovou dlzkou A,
plati

h h NFE PAt
pPENS =N =" =
E

kde sme pri tpravach vyuzili vztah pre energiu foténu £ = %
Silu, ktorou posobi ziarenie na Zem, vypocitame podla 2. Newtonovho zikonu

_Ap _ \Ap: Ap2
F_At_ <(1 a)At +aAt>.

Znamienko minus je vo vztahu pouzité kvoli tomu, Ze podla zdkonu zachovania hybnosti je
zmena hybnosti Zeme v opacnom smere ako zmena hybnosti foténov. Dosledkom toho je Zem
ziarenim ,odtlacana“ od Slnka.

Kvoli symetrii situdcie bude sila pdsobit v smere spojnice Slnko-Zem, ktory budeme dalej
nazyvat ,rovnobezny smer®. Vzhladom na vysledny smer sily F budeme uvazovat len zmenu
hybnosti v rovnobeznom smere (Fj). V skutocnosti sa nam ale oplati zaviest si namiesto sily
tlak slne¢ného ziarenia

,PiFi 1Ap P11 I
TATAAL Ac e

kde I je vykon, ktory ma ziarenie vo vzdialenosti Zeme od Slnka, na jednotku plochy oriento-
vanej kolmo na tieto lice.

Pozrime sa na prvy pripad, v ktorom st vSetky slne¢né liuce pohltené. Kedze fotény smeruja
v rovnobeznom smere, tak v rovnakom smere bude aj ich zmena hybnosti Ap;s = p. Tlak P
v tomto pripade vyjadruje, Ze na element plochy dAeg, ktory je kolmy na luce, pdsobi element
sily dF|. Element plochy dA s Iié¢mi zviera uhol ¢, preto dAcq ziskame tak, ze dA premietneme
do smeru kolmého na lice a dostaneme

dAeg = dAcosp = 2nR’ sin p cos p dep .

Vysledn3 sila pésobiaca na Zem v rovnobeznom smere je potom

m/2 /2 .
2
Fy = / PdAg =P - 2nR§9 / sin p cos pdp = 27:73'R§9 / sin(2p) de
polgula 0 0 2
1
:27:733%-5 =P 1Ry .

Dostali sme znamy vysledok, a to, Ze ak na gulu svietia rovnobezné lace, tak potom je efektivna
plocha Zeme v kolmom smere nR3,.

Rozoberme teraz druhy, komplikovanejsi pripad. Ako sme uz v uvode naznacili, zmena
hybnosti Ap2 je kolma na povrch, ¢ize bude smerovat v radidlnom smere zo stredu Zeme
v danom mieste odrazu (situdcia je analogickd ku dopadu licov na rovinu pod uhlom ¢ od
kolmice). Velkost Aps je rovnd dvojndsobku kolmej hybnosti na povrch, teda Aps = 2p, =
= 2pcosy. Z Apz nés ale zaujima iba rovnobezna zlozka rychlosti so spojnicou Slnko-Zem,
teda

Apsy| = Apzcosp = 2pcos” o = p (1 + cos (2¢)) -
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Analogicky k prvému pripadu vsak musime ratat este s efektivnou plochou dAeg namiesto
celkovej plochy dA. Vyslednd sila potom je

/2
) = / P (14 cos (2¢)) dAess = P - 21R5 / (sin @ cos ¢ + sin @ cos ¢ cos(2¢p)) dey
polgula 0

/2 . /2 .

2 4 1

:ZRPR%</ det/ de)zwmé-(fro):ﬂmé.
0 0

Dostali sme prekvapivy vysledok — efektivny povrch pri dplnom odraze je rovnaky ako pre
tplne pohltenie! Z toho vyplyva, ze v skutocnosti vyslednd sila pdsobiaca na Zem nie je vobec
z4visld od percenta odrazenych foténov (parametru «).

V tomto momente nadm ostava uz len urcit hodnotu intenzity I. Slnko vyzaruje s vyko-
nom L. Toto svetlo sa siri od Slnka do vsetkych smerov rovnako, teda vo vzdialenosti 7 = 1 au
pripada na jednotku plochy vykon

_ Lo
T d4nr?’
Napokon dostadvame
I Lo RE .
Fy=1—-a)Fy +aFy = EnRé = Tfr—f =58-10°N.

Této sila je vyrazne mensia ako gravitacna sila, ktorou posobi Slnko na Zem, s velkostou ~
~3,5-10%* N.

Vladimir Slanina
vladimir.slanina@fykos.cz

Uloha GH ... nabity prstenec

Kubo se snazil vytvorit past pro nabité castice. Vzal si k tomu tenky homogenné elektricky
nabity prstenec o poloméru R = 1,0cm a délkové nidbojové hustoté A = 9,0 - 107 C-m~?.
Nésledné do jeho stredu vlozil nabitou ¢dstici s mérnym ndbojem q/m = 5,2 - 108 C-kg~t. Ve
sméru kolmém na rovinu prstence slo bohuzel jenom o labilni rovnovaznou polohu, proto c¢astici
ze stfedu mirné vychylil jen v této roviné. Urcete periodu pocdtecniho pohybu castice kolem
stredu prstence. Kubo chtél analyticky spocitat integrdl z tlohy ,, Faradayuv kolektor®

Na urcenie periédy malych kmitov musime najprv spocitat
vysledn silu poésobiacu na nabiti ¢asticu od nabitého prsten-
ca. Ten bude posobit iba coulombicky, ale z kazdého svojho
bodu. Oznacme si vychylku nabitej ¢astice od stredu prstenca
ako z a vzdialenost nejakého elementu prstenca (v smere 1
od Castice) ako r. Td vieme spoéitat pomocou kosinusovej ve-
ty ako r? = R?+ 2% — 2Rz cos ¢, kde ¢ je stradnica elementu
na prstenci vzhladom na jeho stred. Tento uhol vieme urcit
pomocou sinusovej vety pre strany R a x.

R . T
sin(r —¢)  sin(y — )

= =9 - arcsin(% sin1/1) ,
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cos ¢ = cos(v) cos (arcsin(% sin w)) + sin(z/;)% sing) =4/1— ﬁ sin? v cos 1 Lz sm ).

Dosadenim do kosinusovej vety dostdvame vzdialenost r ako funkciu uhla 1, priéom pre malé
hodnoty x mézeme vyraz upravit zanedbanim ¢lenov radu O(x?).

/ 2
2= R*+a? —2Rx\/1 - %sin%ﬁcoswf%fsin?w ~ R? —2Rx cosp.

Dalej este potrebujeme vyjadrit dizku elementu prstenca dl z diferencidlu dy. T spoditame
opét pomocou kosinusovej vety.

2 2
de_r2+<r+dew> 2r<r+dwdw>cosdw—(dwdw> +r2dy? + 0 (dy®)

dl = r2+< > =/r?+0(x?)dy = rdy

Derivécia funkcie (1) je rddu O(x), jej druhd mocnina sa bude preto spravat aspoti ako O(2?),
takZe ju modzeme zanedbat v porovnani s hodnotou 2.

Teraz ndm uz ni¢ nebrani v tom spocitat celkové elektrické pole pésobiace na nabitt ¢asticu.
To by sme standardne mohli pocitat vektorovo, tu si ale mézeme uvedomit osovii symetriu nasho
problému a obmedzif sa na zlozku intenzity v smere vychylky z. Do vyrazu preto pridame

prefaktor cos .

1 Acos vy A cos Y A ™ cos ( T )
E| = ~ 14 = -
al 4neg ]{ r2 d 27eo /0 r dy ~ 2meo /o R + R cosy ) dy

Az Ty Az " 14 cos(2¢) Az {wr Az
_— d = d = — = .
2Rz, /O cosTvdY = o R, /0 2 K= o ) By

Pri vypoéte sme vyuzili aproximéaciu r—' ~ R™* (1 + (z/R) cos ) vyplyvajicu z rozvoja r(x)
vyhovujicu pre malé z. Pri samotnom vycislovani vysledného integralu sme zase vyuzili fakt,
ze integral z kosinusu od 0 do « aj od 0 do 27 je nulovy.
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Nakoniec ndm zostdva si uz len napisat pohybova rovnicu nabitej Castice s ndbojom ¢
a hmotnostou m, identifikovat v nej rovnicu harmonického oscilatora a z nej urcit periédu
malych kmitov.

e 2 2 _ 4
ma = 1Rz mwr = w = ImRiz’
T=2" —azRr [0 Z547.10 %,

w qA

Hladana periéda malych kmitov nabitej Castice je priblizne T' = 5,5 ns.

Jakub Kliment
jakub.kliment@fykos.cz

Uloha HA ... tfeni na naklonéné roviné

Mame hmotny bod na naklonéné roviné s proménnym sklonem v homogennim tihovém poli.
Uhel o mezi rovinou a vodorovnym povrchem budeme pomalu zvétsovat do hodnoty o, pfi
které se hmotny bod zacne pohybovat. Nasledné thel a zmensujeme thlovou rychlosti w =
=1°s7! tak, Ze osa otdceni roviny prochdzi hmotnym bodem. Jakou vzdélenost po naklonéné
roviné urazi hmotny bod mezi dvéma stacionarnimi polohami? Koeficient statického treni je fs =
= 0,65 a koeficient dynamického treni fq = 0,51. David si zapsal bakalarské repetitorium.

Ulohu vieme riesit v dvoch rozmeroch, a tak si stiradnicovi stistavu zavedieme tak, ze os = bude
rovnobezna s naklonenou rovinou a os y na nu kolma. Rozkladom poésobiacich sil do tychto dvoch
smerov ziskame nasledujicu sistavu rovnic

rz: T+G=ma = mgsina—T=ma,

y: N+G=0 = mgcosa— N =0,
kde T oznacuje treciu silu, G tiazovu silu, N normaéalovi silu pésobiacu na hmotny bod od
podlozky, m jeho hmotnost, g tiazové zrychlenie a napokon a oznacuje vysledné zrychlenie,
s ktorym sa bude bod pohybovat.

V case t = 0 je uhol a prave taky, ze sa sily v x-ovom smere rovnaji, z ¢oho ziskame rovnicu

na vypocet uhla a;

mgsin(ay) = femgcos(a1) = a1 =arctg(fs) .

Vieme, Ze hned ako sa hmotny bod zac¢ne pohybovat, tak sa za¢ne menit aj uhol a kon-
Stantnou rychlostou w. Plati teda «(t) = a(0) — wt = a1 — wt. Vo vSeobecnom c¢ase t, kedy
sa hmotny bod pohybuje, potom dostaneme z druhého Newtonovho zdkona

mgsina(t) — famgcosa(t) =ma = a = g(sin(aq — wt) — facos(ar — wt)).
Zintegrovanim poslednej rovnice podla ¢asu dostaneme zévislost v(t)

v(t) = g(cos(m —wt) + fasin(ar — Wt)) +C.

Pouzitim podmienky, ze v Case t = 0 je rychlost nulova, sa zbavime integracnej konstanty C
a dostaneme

v(t) = %(cos(al — wt) — cos(a1) + fa(sin(ar — wt) — sin(al))) .
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7 tejto rovnice vieme teraz uz vypocitat ¢as tmax, v ktorom sa hmotny bod znova zastavi,
t.j. kedy bude platit v(tmax) = 0. Na osamostatnenie ¢asu ¢t v rovnici najprv vyuzijeme suctové
vzorce pre goniometrické funkcie sin(a1 —wt) = sin(a1) cos(wt) —cos(a) sin(wt) a cos(ay —wt) =
= cos(a1) cos(wt) + sin(an) sin(wt). Dosadenim a tpravou predchadzajicej rovnice tak dosté-
vame

u(t) = %((cos(al) + fasin(ai)) (cos(wt) — 1) + (sin(a1) — fa cos(ai)) sin(wt)) =0,

(cos(a1) + fasin(ai)) (1 — cos(wt)) = (sin(a1) — fa cos(ar)) sin(wt) ,
wt\ 1 —cos(wt) sin(an) — facos(ai)
tg(;) © sin(wt)  cos(ai) + fasin(ar)’

wt sin(on) — facos(ar) | fs—fa
2 aertg<cos(oz1) + fa sin(a1)> - arctg(l + fdfs) ’

fsffd -
b = 2 arct ~12,0s.
warc g(l-i-fdfb S

Okrem vztahu pre tangens poloviéného argumentu sme vyuzili aj vyjadrenie sinusu uhla a;
ako fs/+v/1+ f2 a jeho kosinusu ako 1/4/1 + f2, ktoré vyplyvaji zo vztahu a; = arctg(fs).

Ked uz mame vyjadreny cas tmax, mozeme pristipit k poslednému kroku — najdeniu po-
lohy 2(tmax), ktord zodpovedd vzdialenosti, ktord presiel hmotny bod po podlozke. Podobne
ako sme nasli zavislost v(t) integréciou a(t), tak teraz opatovnou integraciou v(t) vyjadrime x(¢).
Vyjde ndm

z(t) = %(sin(on) —sin(a1 — wt) — wt cos(ar) + fa(cos(ar — wt) — cos(ar) — wt sin(a1))) ,

kde sme integrac¢ni konstantu uréili z podmienky x(0) = 0. Opét vyuzijeme stuétové vzorce pre
sinus a kosinus a dant zavislost upravime do tvaru

z(t) = % ( (facos(ar) —sin(a)) (cos(wt) — 1) + (fasin(ai1) + cos(a)) (sin(wt) — wt)) ,

ktory je opat analogicky predpisu v(t). Teraz ndm zostdva uz len dosadit ¢as tmax a vysledok
upravit do findlneho tvaru. Pri dpravich pouzijeme identity

l—y2

1+9y2°

2y
1442

sin(2arctgy) = a cos(2arctgy) =

Dostévame tak

_ 29 fs—fa _1+fdfs . fs— fa - m
x(tm)_“2<\/1+f3 \/1+f3aCtg(1+fdf=)> s

kde sme za uhlovi rychlost dosadili w = n/180rad-s™" = 1,745 - 10 %rad-s ™"

Jakub Kliment Ddvid Brodrianskjyj
jakub.kliment@fykos.cz david.brodnansky@fykos.cz
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Uloha HB ... dramatické zesileni

Do homogenniho elektrického pole o intenzité E = 333V-m~' umistime vodivou nenabitou
kouli o poloméru R = 7,5cm. Urcete, jaka bude v oblasti nejvetsi velikost elektrické intenzity.
Jarda st vsimnul, Ze kdyz sedi u rddia, tak lépe hraje.

Vlozime-li do elektrického pole vodivou kouli, ndboje se na ni preskupi tak, ze kulova slupka
bude ekvipotencialni plochou. Na nalezeni pole ovsem vyuzijeme nasledujici trik.

Uvazujme, ze do elektrického pole vlozime elektricky dip6l o hodnoté p, orientovany ve
sméru osy z, kam také mir{ pole. Hodnota potencidlu elektrického dipdlu je

dpr_1pz
dxe 3 Adne 73’

Pdip =
kde p je velikost dipélu a r je polohovy vektor z poc¢atku ve stredu dipélu. Celkovy potenciél je

1
Ptot = Paip — Bz = (E% - E) z

Muzeme si véimnout, Ze pro jistou vzdalenost R, pro kterou plati p = 4ne ER3, je potencisl
nulovy nezavislé na hodnoté z. Kolem dipélu v homogennim elektrickém poli tedy existuje ekvi-
potencidlni plocha tvaru kulové sféry. Kdybychom na tuto plochu umistili opravdovou vodivou
kulovou sféru, nic by se nestalo, protoze plocha je to ekvipotencidlni. Pokud v tento okamzik
dipél uvnitt vodivé sféry odebereme, preskupi se na sfére tak, aby byla opét ekvipotencialni.
Situace mimo kouli se ovSsem nezméni, protoze siloCary pole musi byt stdle kolmé ke kulové sfére.
Lze ukazat, ze existuje pravé jedno reseni takového problému — a my jsme jej nasli. Umisténi
vodivé sféry do homogenniho elektrického pole je (mimo kouli) ekvivalentni umisténi dipélu
o vhodné velikosti na misto stfedu koule.

Ze zadani méme polomér koule jako R, proto je vhodn4, velikost dipélu p = 4ne ER3. Takovy
dipdl kolem sebe vyvola elektrické pole o intenzité

1 pr p) 3(z-r z)
Egip = — - = |=F —r—-—,
P e (3 75 g r3 R 3zr5r zr3

kde jsme zavedli jednotkovy vektor ve sméru osy z jako z/z, pri¢emz plati p = p-z/z. Celkova
intenzita elektrického pole je

ER? 22 r3
Etot = Edip + E = o (37.21' + (Rd —1)z .

Hledame nejveétsi velikost elektrické intenzity, coz je ekvivalentni s tim hledat nejvétsi kvadrat
elektrické intenzity a na konci jej pouze odmocnit. Ten tedy najdeme jako

- 2 P 2 P
2 ER’ 2, (P .2 3 ,
Etot = Etot - Etot = < o 9’/’74T + ﬁ -1 2"+ 671*2 ﬁ -1z =

2 2
34 2 z 1 2 1 z
—@R)Gw+mgw+w+%mg~

Uvazujme nyni sféru s polomérem r > R. Na kazdé takové sfére je velikost intenzity maximalni
v mistech, kde je maximalni z, tedy pro z = r. Dosazenim z = r tak dostavame

2 3\ 2 4 1 4
B = (B (5 + 5+ 5p) -
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Tato funkce rychle klesd se z. Je proto evidentni, Ze nejvyssi hodnota velikosti intenzity elektric-
kého pole bude tésné u koule, tedy ve vzdalenosti z = R. Dosazenim a odmocnénim ptredchoziho
vztahu dostaneme vysledek

Emax =3F =999 \/v'l’l’171 5

ktery nezavisi na poloméru koule ani na nicem jiném.

Jaroslav Herman
jardah@fykos.cz

FYKOS

UK, Matematicko-fyzikalni fakulta
Ustav teoretické fyziky
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