


Fyziklani 2023 17th year 10th of February 2023

Solutions of problems

1



Fyziklani 2023 17th year 10th of February 2023

Problem AA . . . at the concert
Danka was at the concert at the airport. During one song, they had the drumming and the
flashing of the spotlights over the stage synchronized. It was a periodic drumming and flashing
with a period of T = 1.5 s, and the two events always happened simultaneously. However,
Danka saw that the spotlights were flashing with a half-period offset from the sound of the
drums. What is the smallest possible distance Danka could be from the stage to observe this
phenomenon? Danka and other organizers were at the Rammstein concert.

When Danka stands at the distance x from the stage, the light from the stage reaches her
in t1 = x/c, where c is the speed of light. Similarly, the drumming propagates through the air
to Danka at the speed of sound in the air v, so the sound wave reaches her in t2 = x/v. Since
Danka sees that the light and sound waves reach her with a T/2 offset, the following must hold

t2 − t1 = T

2 .

We insert the above-mentioned formulas for the times t1 and t2 and then express the distance
we are looking for

x

v
− x

c
= T

2 ,

x
(

c − v

cv

)
= T

2 ,

x = T

2

(
cv

c − v

)
.

Now, we can notice that the second fraction in the last equation can be modified to the
form v/(1 − v/c), and since the v/c ratio is several orders of magnitude smaller than 1, the
whole fraction is quite exactly equal to v. Then

x = vT

2
.= 257 m .

Hence, Danka had to stand at a distance of 257 m from the stage. In general, Danka can stand
at the places that satisfy the condition t2 − t1 = (2n − 1) · T/2, where n is a natural number.
However, since we are interested in the smallest distance, we consider n = 1 in the whole
solution.

Daniela Dupkalová
daniela@fykos.org

Problem AB . . . slow cyclist
Verča is driving her car on the road at speed v1 = 82 km·h−1. A cyclist is pedaling along the
side of the road at speed v2 = 16 km·h−1 and Verča wants to pass him, so she has to drive into
the middle of the road. As she does not want to endanger him, she leaves the lane d = 20 m
before the cyclist and always returns back at a distance d = 20 m after him (in the direction
of travel). How long would a stationary obstacle on the side of the road have to be for Verča
to spend the same amount of time going around it as she did when passing the cyclist? She
only goes around stationary things with a margin of l = 10 m. Ignore the time required to cross
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between the center of the road and the lane. Think of the car and the cyclist as points (do not
consider their length). Verča doesn’t like going around obstacles. So she doesn’t drive.

Let us denote the length of the obstacle we are looking for as S and the distance the cyclist
will travel while the car is in the passing lane as s. The key to solving the problem is to express
the time t that the car spends here. From the above, we get the equation

v2 · t = s .

The second equation in the system describes the distance the car travels in time t, i.e.

v1 · t = 2d + s ,

because the car goes around the cyclist with a margin d on both sides.
From this system of equations, we can easily express the time t and distance s as

s = 2d
v1
v2

− 1 , t = 2d

v1 − v2
.

The distance S we are looking for is this cyclist’s path, to which we add the difference in the
overtaking margin, so we get

S = s + 2(d − l) = 2d
v1
v2

− 1 + 2(d − l) .

After plugging in the numerical values, we find that the obstacle would have to measure ap-
proximately S

.= 30 m.

Veronika Hendrychová
veronika.hendrychova@fykos.org

Problem AC . . . not enough time
Daniel needs to extend the time he has left to write his diploma thesis. Ideally, in a way that
three weeks becomes six. The simplest and best solution seems to be to move the Earth by
a little. By how many astronomical units does Daniel need to increase the Earth’s average
distance from the Sun to double the Earth’s orbital period? Write the answer with 3 significant
digits. Daniel needs more time to write his diploma thesis.

We will use the simplified Kepler’s Third Law, where a3 = P 2 holds for the orbital period P
in years and the average distance from the Sun1 a in astronomical units. For the new orbital
period P = 2 years, we will get the equation a3 = 4, from which we can take the cube root and
get a = 1.587 au. If the average Earth-Sun distance is 1 au, Daniel will have to move the Earth
by approximately 0.587 astronomical units, which is beyond the orbit of Mars.

Daniel Dupkala
daniel.dupkala@fykos.org

1more precisely, the length of the orbital semi-major axis
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Problem AD . . . springs and weights
We have three identical springs of negligible mass with stiffness k and three weights of equal
mass m. We attach one spring to the ceiling and hang one of the weights on its other end.
To this weight, we add another spring with a weight on its tail and finally a third spring and
a third weight. By how much do springs elongate with respect to their rest length?

Karel reminisced about springs.

We solve the elongation of each spring separately and then add them up. If we index springs
from the bottom one, the elongation of the first spring is

F1 = mg = ky1 ⇒ y1 = mg

k
.

Analogically for the second and third one

y2 = 2mg

k
, y3 = 3mg

k
.

Then our result is
∆y = y1 + y2 + y3 = 6mg

k
.

Karel Kolář
karel@fykos.org

Problem AE . . . gramophone
The camera records a vinyl record, which is symmetrically crossed by six lines running centrally
from one end to the other. The display shows the record starting to spin gradually. At a certain
point, it seemed that it had stopped moving. At that moment, the record’s perimeter rotates
with a speed v = 3.14 m·s−1, while the record’s radius is r = 10 cm. Determine the frame rate
of the camera. The promising FYKOS-bird forgot to blink.

The angle between two lines on the board is

α = π6 .

The record looks as if it stopped on display when the record rotates between two frames by
any multiple of this angle. However, the plate is gradually rotating, so we are looking for the
smallest rotation, and therefore the frame rate is

f = ω

α
= 6v

πr
.= 60 s−1 .

Jan Pijáček
jan.pijacek@fykos.org
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Problem AF . . . ball on the boat
Lego and Dodo are sailing down the river on a boat and throwing a ball around on the deck.
They both stand exactly parallel to the boat’s course and the water in the river. Robo, standing
on the shore, watches them from afar. When Lego throws the ball to Dodo, Robo sees that the
ball has a horizontal velocity v1 = 42 km·h−1, when Dodo throws it to Lego, Robo observes
a velocity v2 = 24 km·h−1 in the opposite direction. Lego and Dodo confirm to Robo that they
both throw at the same horizontal speed. At what velocity is the ship sailing relative to Robo,
and in which direction (i.e., from Dodo to Lego or from Lego to Dodo)?

Karel wanted to trump Nanynka’s cabbage problem.
Let’s denote the boat’s velocity vL and the speed at which Lego and Dodo throw (i.e., the ball’s
speed relative to the boat) as vH. Of the velocities that Robo observes, v1 is the larger one. He
observes this when the ball is thrown in the direction of the boat’s motion, so the velocities will
add v1 = vL + vH. From the fact that Robo observes this velocity when Lego throws to Dodo,
we can also see that the boat is sailing away from Lego toward Dodo.

The velocity v2 is observed when the ball is thrown in the opposite direction to the sail. The
magnitude of this velocity will be the difference in magnitudes of vL and vH, so v2 = |vL − vH|.
We still need to figure out which of the two velocities is larger to eliminate the absolute value.
From the problem statement, the velocity v2 is observed by Robo in the opposite direction
to v1. This is only possible if Lego and Dodo are tossing each other at a velocity greater than
the boat’s velocity, so v2 = vH − vL holds.

In summary, we have a system of equations

v1 = vH + vL ,

v2 = vH − vL ,

where the unknowns are vH and vL. However, we are only interested in the speed of the boat,
so it is sufficient to subtract the second equation from the first to get

v1 − v2 = 2vL ,

vL = v1 − v2

2 = 9 km·h−1 ,

so the answer to the question is that the ship is sailing in the direction from Lego to Dodo
at 9 km·h−1.

Šimon Pajger
legolas@fykos.org

Problem AG . . . weighing a dog
Jarda went with his dog to the vet, where he put him on a scale and weighed him. Once he read
his mass, he pulled the leash, but the dog did not move at all. The scale showed a 10 percent
lower reading than before. What is the minimal coefficient of friction between the scale and the
dog’s paws? Jarda pulled the leash at an angle of 40◦ with respect to the ground.

A final tribute to Dort the dog.
Let us denote the magnitude of force by F , the mass of the dog by m, and the angle by α = 40◦.
When weighing with a taut leash, a normal force acts on the scale

FN = mg − F sin α ,

5

mailto:legolas@fykos.org


Fyziklani 2023 17th year 10th of February 2023

so according to the problem statement F sin α = 0.1mg.
In the horizontal direction, the force F cos α acts against the friction force, which is directly

proportional to the coefficient of friction f as Ft = fFN. The dog did not slip on the scale, so
it must hold Ft > F cos α, from which

f >
F cos α

mg − F sin α
.

Now we just substitute for F from the second equation and get

f >
cos α

9 sin α
= 0.13 .

Jaroslav Herman
jardah@fykos.org

Problem AH . . . filling a bucket
A garden hose has a length of 15 m and an inner diameter of 1.5 cm. The 11 m long first part
of the hose lies in direct sunlight; the rest leads through the shade to the tap. The sun beams
warmed the water in the first part to 35 ◦C, while a 15 ◦C water flows from the tap. Assume that
between the warmed-up part of the hose and the tap, the water temperature changes linearly.
Now, we begin to fill up the bucket from the hose. What temperature will the water have at
the end if we fill the bucket with 5.5 ℓ of water?

Jarda reminisces his garden and warm summer days.
A volume of water V1 = l1S

.= 1.9 ℓ lies in the hose in the direct sunlight, where l1 = 11 m a S =
= πd2/4 is the cross-sectional area of the hose, with d = 1.5 cm. This water has a temperature
of t1 = 35 ◦C. Let us calculate the heat stored in it. Since heat is an additive quantity, let
us set the zero heat level of water at 0 ◦C. Thus, after the subsequent calculation, we get the
temperature in degrees Celsius.

Q1 = l1Sρct1 ,

where c is the specific heat capacity of water, and ρ is its density.
In the second part of the hose, the temperature changes linearly between 35 ◦C and t2 =

= 15 ◦C, which corresponds to an average temperature tp = (t1 + t2)/2. Thus, the heat of this
part is

Q2 = l2Sρc
t1 + t2

2 ,

where l2 = l − l1 = 11 m.
Since Sl

.= 2.6 ℓ is still less than V = 5.5 ℓ, we also have to fill the bucket with water that
has not gone through the tap yet. We need V − lS of this water. Its heat is

Q3 = (V − lS) ρct2 .

Since the fluid in the bucket is homogeneous, we obtain its temperature in degrees Celsius
as the ratio of total heat to total mass and specific heat capacity as

t = 1
ρc

Q1 + Q2 + Q3

V1 + V2 + V3
=

l1St1 + (l − l1) S t1+t2
2 + (V − lS) t2

V
= 23.4 ◦C .

Jaroslav Herman
jardah@fykos.org
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Problem BA . . . CR7
Perhaps the best footballer in the world, Cristiano Ronaldo, is 187 cm tall. However, in header
duel, he can jump so high that the top of his head is at a height of 268 cm. The timing of the
jump is very important to score a header. What percentage of the total airtime is a part of his
head above the 250 cm level, where he can hit a flying ball? Jarda still thinks Messi is better.

Let us denote Ronaldo’s height by hR, the height he can jump to hv, and the height where he
needs to hit the ball by hb = 250 cm. Ronaldo lifts by unbelievable hv − hR = 81 cm during
his jump. According to laws of motion in a homogeneous gravitational field, which holds on
a pitch, he spends the time

tv = 2
√

2 (hv − hR)
g

in the air, where g is the gravity of Earth.
Similarly, we can express a condition when he is higher than hb. That gives us time

tp = 2
√

2 (hv − hb)
g

.

We are interested in the ratio

tp

tv
=
√

hv − hb

hv − hR
= 0.47 ,

which is 47 %. Thus, for almost half the time he is in the air, Ronaldo can hit a ball flying
at 250 cm.

Jaroslav Herman
jardah@fykos.org

Problem BB . . . chopping a parsley
Jarda chopped the parsley, which had the shape of a perfect cone with an apex angle of 2α =
= 10 ◦. He got bored of cutting all the pieces with the same width, so he started chopping them
into pieces with constant volume V = 0.9 cm3. What is the width of the seventh piece if he
starts slicing from the tip? A large piece of vegetable was floating in Jarda’s soup.

Let us denote the distance from the tip to the nearer plane of the n-th circle as a hn−1, and
the distance of the tip from the second slice as a hn. Therefore h0 is equal to zero.

The volume of the first piece is V , which shape is a cone. Its volume is

V = 1
3πr

2h1 = 1
3πh

3
1 tan2 α ,

where we expressed the radius of the base using the apex angle and height.
The volume of the first n pieces is nV , so the total height is

hn = 3

√
3nV

π tan2 α
.
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Subtracting the h6 from the h7 will give us the requested result (remember that the α = 5 ◦)

tn = 3

√
3V

π tan2 α

(
3√n − 3√n − 1

)
= 0.46 cm .

Obviously, the width of the discs is decreasing.

Jaroslav Herman
jardah@fykos.org

Problem BC . . . a rod on springs

B

l

A metal rod with a length l = 34 cm and a mass m = 85 g
is suspended by its ends from the ceiling using two conductive
springs. We create a homogeneous magnetic field of size B =
= 0.440 T oriented as is shown in the figure. How much current
does it need to be running through the rod in the right direction
to have the springs not stretched at all?
Danka remembered the time she was studying electromagnetism.

In order for the springs not to be stretched at all, the gravi-
tational force acting on the rod FG = mg in the downward
direction must be offset by another force acting upward. When we insert a conductor through
which an electric current is flowing into a magnetic field, a magnetic force will start to act on
it. Its magnitude is described by Ampere’s law

Fm = IlB sin α ,

where α is the angle between the direction of the magnetic field and the direction of the current.
In our case, the rod is perpendicular to the magnetic field, so α = 90 ◦, and therefore sin α = 1.
When the magnetic and gravitational forces are equal, the following equation holds

mg = IlB sin α .

From here, we express the magnitude of the current we are looking for and plug in the numerical
values

I = mg

lB sin α
= mg

lB

.= 5.6 A .

Therefore a current of 5.6 A has to be flowing through the rod.

Daniela Dupkalová
daniela@fykos.org

Problem BD . . . a swing
The swing chain deviates from the vertical line at the highest point by α = 70 ◦. When the seat
of the swing passes through the lowest point, the chain suddenly breaks. The chain is l = 2 m
long, and the seat is at rest at the height h0 = 1 m above the ground. How far does the seat fall
from the vertical line of the swing? A promising FYKOS-bird is thinking about the future.
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First, we determine the maximum height that the swing can reach

h = h0 + l (1 − cos α) .

Since we assume that mechanical energy is being conserved (Ek = Ep), we can determine the
horizontal component of the velocity as

1
2mv2

x = mg (h − h0) ,

from which we express the horizontal velocity

vx =
√

2gl (1 − cos α) .

We write the height of the vertical throw in a homogeneous gravitational field as h0 = gt2/2.
From this, we find the time

t =
√

2h0

g
,

which, when multiplied by the formula for vx, gives us the horizontal distance we are looking
for

sx = vxt =
√

4h0l (1 − cos α) = 2.3 m .

Jan Pijáček
jan.pijacek@fykos.org

Problem BE . . . dense energy
Nowadays, we are looking for ways to get energy. One way is to generate electricity from
renewable sources such as the wind or the sun. However, these do not produce electricity
under all conditions, so the energy needs to be stored. Let us compare two options – pumped
hydroelectric energy storage and compressed hydrogen. The Dlouhé stráně power plant has
a working volume of water in the upper reservoir of 2 580 000 m3, a water gradient of 510 m and
an efficiency of 90 %. Hydrogen gas H2 can be stored compressed in 50 ℓ cylinders at a pressure
of 70 MPa. The heating value of hydrogen is 120 MJ·kg−1 and the conversion efficiency to
electricity is 50 %. Consider hydrogen an ideal gas with a temperature of 25 ◦C. How many of
these filled hydrogen cylinders are equivalent to the available electricity of the Dlouhé stráně
power plant? Jarda wanted to stock up electricity before it gets more expensive.

The available energy at a pumped storage power plant is the potential energy of a homogeneous
gravity field

Ee = ηeVeρvgh = 11 600 GJ ,

where ηe = 0.9, Ve is the volume of the upper reservoir, ρv is the density of the water, and
h = 510 m is the gradient of the water.

We calculate the energy in one bottle of hydrogen from its mass and gravimetric energy
(energy stored per unit mass). Considering hydrogen is an ideal gas, its density at pressure p =
= 70 MPa and temperature T = 298 K is

ρh = Mmp

T R
= 56.5 kg·m−3 ,

9

mailto:jan.pijacek@fykos.org


Fyziklani 2023 17th year 10th of February 2023

where Mm
.= 2 g·mol−1 is the molar mass of the hydrogen molecule.

The available energy from a bottle of hydrogen is thus

Eh = ηhlVlρh = 170 MJ ,

where ηh = 0.5, l is the gravimetric energy and Vl is the volume of the bottle.
By dividing the two energies, we get the number of bottles N = 68 000. However, the total

volume of hydrogen in all the bottles is several orders of magnitude smaller than the volume of
the hydropower plant reservoir.

Jaroslav Herman
jardah@fykos.org

Problem BF . . . a pulley that shifts
We have a massless movable pulley. One end of a massless rope that goes through the pulley
is attached directly to the ceiling; the other end is connected to a spring with stiffness k =
= 80 N·m−1, which is attached to the same ceiling. We will hang a weight with mass m = 1.0 kg
onto the pulley. How far will the pulley shift downwards?

This crossed Lego’s mind when he was writing down a different problem...

The whole system will be at equilibrium when both sides of the rope pull the pulley with
force mg/2. The spring will be strained by mg/(2k) with respect to its initial length. The
extensional strain is distributed equally between the two halves of the rope coming out of the
pulley; thus, the pulley will only move by mg/(4k) = 3.1 cm.

Šimon Pajger
legolas@fykos.org

Problem BG . . . does is float?
We have a cube, and the only thing you know about it is that its sides are shorter than 10 cm.
Furthermore, we have a container with a square base of side a = 10 cm, which we fill with
water of volume V = 1 ℓ. When we drop our cube into the container, the level of water rises
by ∆h1 = 3.5 cm. We then remove the cube, pour the water out, and replace it with methanol
of volume V and density ρM = 792 kg·m−3. When we drop the cube into the container with
methanol, the level rises by ∆h2 = 4.2 cm. What is the density of our cube? Yes, you do have
all the data needed. Lego wanted to assign an interesting Archimedes problem.

The key observation in this problem is that ∆h1ρV ̸= ∆h2ρM, i.e. in at least one liquid the cube
lies at the bottom of the container. If that wasn’t the case, and the cube was indeed floating
in both liquids, the buoyant force would have to be equal in both cases, thus a2∆h1ρVg =
= a2∆h2ρMg. Divide the previous expression by a2g and we get a condition on the product of
the rise of the level and density, which is not satisfied, therefore it cannot be true that the cube
floats in both liquids.

Moreover, it cannot lie on the bottom of the container in both liquids, since ∆h1 ̸= ∆h2.
Thus, it obviously floats in one liquid and lies on the bottom in the other. Logically, the cube
will float in the liquid with higher density and lie on the bottom in the one with the lower
density.
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From the rise of the methanol level, we can easily calculate the volume of the cube as Vk =
= a2∆h2. We can also calculate the mass of the cube from the rise of the water level since its
weight must be the same as the weight of a liquid whose volume is equal to the volume of the
submerged part of the cube, i.e. mk = a2∆h1ρV.

The density of the cube will therefore be

ρk = mk

Vk
= a2∆h1ρV

a2∆h2
= ∆h1

∆h2
ρV = 832 kg·m−3 .

Šimon Pajger
legolas@fykos.org

Problem BH . . . restless coin
When riding up the inclined moving walkway of inclination α = 10 ◦ and length l = 30 m,
a coin drops out of Verča’s pocket when she is exactly in the middle of it. It falls into one of the
grooves on the walkway and starts rolling down without slipping. How much time does Verča
have to catch the coin before it falls under the bottom edge of the walkway? The velocity of
the moving walkway is v = 0.9 m·s−1.

Verča is constantly losing the content of her pockets and fears the escalators.

First, we express the distance of the coin from the lower end of the walkway in terms of time.
We determine it from the total energy balance for a decrease in height h. Potential energy
converts to translational energy

Ek,t = 1
2mv2

and rotational energy
Ek,r = 1

2Jω2 .

Letter J denotes the moment of inertia. In our particular case, for a coin shaped like a cylinder,
J = mR2/2, where m is the mass of the coin and R is its radius. Angular velocity ω is bound
to the velocity of the coin due to the no-slip condition as v = Rω. Thus, adding the two
contributions to the kinetic energy, we get the following from the law of conservation of energy

mg∆h = Ek,t + Ek,r = 1
2mv2 + 1

2
1
2m (Rω)2 = 1

2
3
2mv2 .

That is the same formula as for uniformly accelerated motion, except that the mass of the coin
on the right is multiplied by a factor of 3/2. Thus, the coin will have a constant acceleration
of magnitude

a = 2
3g sin α .

The coin’s motion down the walkway is uniformly accelerated, but its initial velocity v
relative to the ground is in the opposite direction. So we get the equation

x = l

2 + vt − 1
2

2
3gt2 sin α .
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Putting x = 0 gives us the time in which the coin will reach the bottom edge. So, we need to
solve the quadratic equation for t to get the roots

t1,2 =
−v ±

√
v2 + 2

3 lg sin α

− 2
3 g sin α

.

Putting in the numerical values, we get t1
.= −4.4 s and t2

.= 6.0 s. We will not consider negative
time, so Verča has roughly 6.0 seconds to get the coin.

Veronika Hendrychová
veronika.hendrychova@fykos.org

Problem CA . . . oscillating pulley
Let us have a massless movable pulley. One end of a massless rope that goes through the pulley
is attached directly to the ceiling, while the other end is attached to a spring of stiffness k =
= 80 N·m−1, which is attached to the same ceiling. We hang a weight of mass m = 1.0 kg on
the pulley. What is the period of small oscillations of the weight?

Lego loves pulleys and oscillators, so why not to combine them?!

When we deviate the weight from the equilibrium position lowering it by dx, the pulley also
moves by dx. Thus, the total length of the rope and the spring must increase by 2 dx. As
the rope does not elongate, it must be the spring that is extended by this length. Thus, the
spring will pull with a force 2k dx greater than it was pulling while in the equilibrium position.
Since the rope and the pulley are both massless, the force exerted by the spring is equal to
the tension along the entire length of the rope. As the pulley is pulled upward by the rope on
both sides (i.e. twice), the pulling force is 4k dx greater than in the equilibrium position. The
pulley is weightless, so this is also the contribution to the force, which is pulling our weight
upward. When we divide the force contribution by the displacement that caused it, we get the
effective stiffness that the weight experiences as kef = 4k. (We reached the same conclusion in
the problem “a pulley that shifts”, where we found that, when a weight is hung on the pulley,
the pulley moves down by mg/(4k) = mg/kef.)

All that remains is to substitute into the formula for the period of a linear harmonic oscillator

T = 2π
√

m

kef
= π
√

m

k
= 0.35 s .

Šimon Pajger
legolas@fykos.org

Problem CB . . . a crystal of beryl
Beryl crystallizes in a hexagonal crystal system, i.e., with the unit cell in the shape of a per-
pendicular prism, whose base is a rhombus. If we correctly join 3 unit cells, the resulting
perpendicular prism has the base of a regular hexagon, with the side a. The height of the
prism, c, is approximately equal to a. In the unit cell, there are atoms corresponding to two
molecules of beryl, whose chemical formula is Be3Al2(SiO3)6. The relative atomic mass of beryl-
lium is ABe = 9.01, aluminium AAl = 27.0, silicon ASi = 28.1 and oxygen AO = 16.0. What is
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the length of the hexagonal side a, if the density of beryl is ρ = 2 760 kg·m−3?
Karel made a simple high school problem more complicated.

Let us first calculate the mass of the beryllium molecule. We are given the relative atomic
masses of all the atoms in the molecule. These give us the masses of the atoms as multiples of
the atomic mass unit, which is defined as one-twelfth the mass of a carbon atom 12C, which is
mu = 1.66 ·10−27kg.

One molecule of beryl contains 3 atoms of Be, 2 Al, 6 Si, and 6 · 3 = 18 O, then the total
mass of the molecule is

mmolecule = (3ABe + 2AAl + 6ASi + 18AO)mu = 537, 6mu = 8, 92 · 10−25 kg .

Next, we need to calculate the volume of one unit. The volume of a prism is the height times
the area of the base; the height is simply a in our case. The base is a regular hexagon, so we
calculate its area as 6 times the area of an equilateral triangle with side a

Sp = 6St = 3a va = 3a

√
a2 −

(
a

2

)2
= 3

√
3

2 a2 ,

and to get the volume, we need to multiply the calculated area by a.
All that is left to do is plug the obtained result in the formula for density, not forgetting

that there are 2 · 3 molecules per one hexagonal base, and express a

ρ = m

V
= 6mmolecule

3
√

3
2 a3

,

a =
(

4mmolecule√
3ρ

) 1
3

≈ 0.91 nm .

Šimon Pajger
legolas@fykos.org

Problem CC . . . lasagna
Consider a layering lasagna. The first layer with everything in its place has a mass m0 = 100 g
and has a temperature T0 = 300 K. Each additional layer weighs p = 1/3 times more than
the previous layer; however, it is fresher. That means its absolute temperature is q = 2 times
higher than the previous layer. Since Pepa was very hungry, he stacked an infinite number of
these layers on each other. At what temperature will the lasagna in its final form stabilize if
the system reaches thermal equilibrium? Do not consider heat loss. Bon appétit.

Pepa was hungry.

First, let us calculate the weight of the whole lasagne. The weight of the ith layer will be mi =
= m0pi. Therefore the mass of the whole lasagne will be

M =
∞∑

i=0

m0pi .

That is a geometric series; those of you who know the formula for its sum, go ahead and use it;
however, for those that do not know the formula, we will show you how to get it. The trick is to
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multiply both sides of the equation by p, and we will also substitute j = i+1 on the right-hand
side

pM =
∞∑

i=0

m0pi+1 =
∞∑

j=1

m0pj .

Notice that on the right-hand side, we have the same sum, which was equal to M , with the
difference that it starts from the first term, not the zeroth term. Thus at the right-hand side,
we have M − m0, from which we get the linear equation

pM = M − m0

M = m0

1 − p
.

We still need to calculate the total heat contained in the whole lasagna and divide it by the
total mass. The heat contained in one layer can be calculated as Qi = miTic = m0piT0qic =
= Q0piqi, where c is the specific heat capacity of the lasagna and Q0 = m0T0c is the heat in
the zeroth layer. Therefore, we will get the total heat using the same procedure we used to get
the total mass

Q = Q0

1 − pq
= m0T0c

1 − pq
.

If the whole lasagna settles at the thermal equilibrium, the following must be true for its
temperature

TvcM = Q

Tv =
m0T0c
1−pq

c m0
1−p

Tv = T0
1 − p

1 − pq
= 600 K .

Šimon Pajger
legolas@fykos.org

Problem CD . . . lenses for nothing
Consider two lenses at a mutual distance d = 25 cm. The first is a biconvex lens with focal
length f = 10 cm, and the second is a biconcave lens with focal length −f . How far from the
first lens do we need to place the object for the system to project it on itself?

Jarda likes to project himself on himself.
Let us denote the object distance from the connecting lens as a. According to the Gaussian lens
formula, the object will appear through the lens at a distance

a′ = af

a − f
.

The distance of this image from the second lens is a2 = d − a′. We will use the Gaussian lens
formula for the second time and get

a′
2 = −a2f

a2 + f
= − (d − a′) f

d − a′ + f
=

−
(
d − af

a−f

)
f

d − af
a−f

+ f
.
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According to the problem statement, the position of the image is equal to the position of the
object, therefore a′

2 = −d − a. So we are trying to solve the equation

− (da − df − af) f

da − df − f2 = −d − a ,

from which we get
a2 + (d − 2f) a − df = 0 .

The solution to this equation is

a =
−d + 2f ±

√
d2 + 4f2

2 .

Since we place the object in front of the first lens, the solution will be a root with a positive
sign. The answer is a = 13.5 cm

Jaroslav Herman
jardah@fykos.org

Problem CE . . . heating with hydrogen
Electrolysis of water produces oxygen and hydrogen, the latter of which we capture and store
in an inflatable balloon. The process takes place at a voltage of 1.48 V, electric current of 15 A
and produces 0.16 g of hydrogen molecules H2. Next, we will let the hydrogen burn in the air
to heat a water container. The container has a heat capacity 22 J·K−1 and an inner volume
of 55 ml filled with water with initial temperature 23 ◦C. After the hydrogen gets burned, the
temperature inside the container rises to 94 ◦C. What percentage of energy was used to heat
the container and water? Jarda wanted to warm himself up with water.

The molar mass of hydrogen approximately equals MH2
= 2.0 g·mol−1 because the hydrogen

molecule is composed of two protons (as a matter of fact, it is MH2
= 2.016 g·mol−1, but in

this case, less precision is sufficient). Mass m = 0.16 g corresponds to the number of molecules
by n = NAm/MH2

. The number of hydrogen atoms is double that of molecules, thus the total
electric charge in the reactions is

Q = 2NAm

MH2

e .

The work done by the electrolyzer is simply

W = 2U
NAm

MH2

e .

We got this energy, which stored itself in the hydrogen molecules by breaking up the water
molecules. On the other hand, if we burn the hydrogen in the air, the energy will be released
as heat.

By heating the container and the water, we have added heat

Q = (C + Vwρwcw) (t2 − t1) ,

where C is the heat capacity of the container, Vw, ρw and cw are the volume, density and
Specific heat capacity of the water in the container and t2 − t1 is the difference between the
initial and final temperature.

15
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The desired efficiency is

η = Q

W
=

MH2
(C + Vwρwcw) (t2 − t1)

2UeNAm
= 78 % .

Note that in order to heat this amount of water to nearly the boiling point, we used
only 0.16 g of hydrogen! Hydrogen has the highest calorific value per mass unit of all chemical
fuels.

Jaroslav Herman
jardah@fykos.org

Problem CF . . . a cart with a plumb bob
Let us consider a hill with a slope at an angle α. We place a wagon with a mass M on top
of the hill. There is a string in the wagon of a length l hanging from the roof with a point
mass m at its end (this mass is not included in the cart’s mass). We then release the wagon
down the hill. What angle relative to the vertical direction does the string stabilize at? Submit
a positive result if the string is deflected in the direction of travel or negative if it is deflected
in the opposite direction. The wagon moves without friction. Lego has
had this idea for a long time and he has no clue why he hadn’t written this problem earlier.

We are interested in the steady state situation, i.e., when the rope and the point mass stop
moving with respect to the wagon. Then, they appear as if they formed one perfectly rigid body
together with the wagon. We can calculate the acceleration of this body moving down the hill.

Its total mass is M + m, and the component of the gravitational force in the direction
parallel to the hill is (M + m) g sin α. Thus the acceleration is a = g sin α.

Let us transfer to a system accelerating with the wagon. If the point mass suspended on the
rope in this system is supposed not to move, there must be a zero resultant force. So now, we
need to discuss the forces acting on it. The gravitational force mg acts vertically downward; the
inertial force ma acts parallel to the roof toward the rear; and finally, there is a force exerted
by the rope on which it hangs. The magnitude and direction of the force from the rope is (in
a steady situation precisely such that this force compensates the two remaining forces. It is
essential to realize that the direction of the force from the rope is in the same direction as the
rope. Thus, we must find the direction of the vector sum of the remaining two forces.

The vertical component of the inertial force has magnitude ma sin α = mg sin2 α, and it is
directed upward. The horizontal component has magnitude ma cos α = mg sin α cos α, which
is directed backward. The combined force of gravity and inertia thus has a component in the
vertical direction mg

(
1 − sin2 α

)
= mg cos2 α pointing downward and a horizontal compo-

nent mg sin α cos α pointing backward. Note that for the limiting case of a vertical hill (α =
= π/2), the mass point does not experience any force in the system associated with the wagon.
This is due to the fact that in this situation, the system free falls, and the point mass is in
a weightless state from the viewpoint of this system.

Now back to the angle of deflection of the rope. We are interested in its deflection with
respect to the vertical direction. We obtain this angle as the inverse tangent of the ratio of the
horizontal and the vertical component

β = arctan mg sin α cos α

mg cos2 α
= arctan sin α

cos α
= arctan(tan α) = α .
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The string will be deflected backward at calculated angle α; therefore, the desired result
is −α.

Šimon Pajger
legolas@fykos.org

Problem CG . . . hot air balloon
A hot air balloon with volume V = 3 000 m3 and mass M = 724 kg (without air) ascends to the
sky. The temperature of the air inside the balloon is Tb = 120 ◦C, while the temperature of the
surrounding air is constant T0 = 20 ◦C. However, as the balloon goes up, the ambient pressure
drops. Determine at what value of ambient pressure does the weight of the balloon equal the
buoyant force acting on it? The volume of the rest of the balloon is negligible compared to the
volume of air in it. Lego recalled the Physics Olympiad.
We know that at temperature T0 and pressure p0 the density of air is ρ0. The quantities in the
equation of state imply, that the density is proportional to N/V , hence we can write

pV = NkT

p

kT
= N

V
∼ ρ

p

T
C = ρ ,

where C is a constant whose value can be determined from the density under normal conditions.

C = T0ρ0

p0

By back-substitution, we get the air density under general temperature and pressure.

ρ = ρ0
T0p

T p0
.

Thus the mass of air in the balloon is at pressure p

m = V ρ0
T0p

Tbp0
,

and the mass of air displaced by the balloon

mvyt = V ρ0
p

p0
.

The task asks at what pressure p the gravitational and buoyant forces are balanced
Fg = Fvz

(M + m)g = mvytg

M + V ρ0
T0p

Tbp0
= V ρ0

p

p0

M = V ρ0
p

p0

(
1 − T0

Tb

)
p = p0

1
1 − T0

Tb

M

V ρ0
= 80 kPa .

Šimon Pajger
legolas@fykos.org
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Problem CH . . . heating
In scientific applications, it is sometimes necessary to heat a sample suspended in a vacuum. This
is done using a stream of accelerated electrons, whose kinetic energy is converted to thermal
energy upon impact. Consider a cathode with an emission stream of electrons Ie, which are
accelerated by a voltage U . These electrons hit a sample with a total surface area S. Assume
that the surface is small enough that the temperature is the same everywhere on it, and all of
the electron energy is converted into heat. At what temperature T , will the sample stabilize?
Consider that it behaves like a perfect black body, i.e., heat loss is only in the form of radiation,
the ambient temperature is much lower than T , and neglect the initial velocity of the electrons
upon emission.

The instrument measures so often that some elementary functions are memorized at last...

We assume a constant emission current Ie, which is defined as usual

Ie = Q

t
,

where Q is the charge of electrons transferred in time t.
Using the equation for the energy of the charge accelerated by the voltage U , we can express

the power P heating the sample

E = QU = UIet ⇒ P = UIe .

The magnitude of the power radiated to the surroundings from our sample is governed by the
Stefan-Boltzmann law

Pok = σST 4 .

The temperature of the sample stabilizes when P = Pok, thus we have

UIe = σST 4 ⇒ T = 4

√
UIe

σS
.

According to the problem statement, we could neglect the incoming power of thermal radiation
from the surrounding environment. Therefore, the last equation gives us the desired result.

Jiří Blaha
jirka.b@fykos.org

Problem DA . . . cutting an apple
We want to cut a perfectly spherical apple with a radius R = 3.6 cm so that only the core is
left. At first, we cut off a section of the apple with a straight cut at a distance a = 0.7 cm from
the center of the apple so that the plane of the cut is parallel to the core’s axis of symmetry.
Perpendicularly to this plane, we make two other cuts at a distance a from the center. Again
at a distance a from the center, we make the last cut parallel with the first one such that the
core is a square with a side 2a when viewed from above. Assume that the force needed to make
the cut is proportional to the length of the knife in the apple. Determine the ratio of the work
done during the last cut and the first cut.

Jarda was sitting under a tree, and an apple fell on his head.
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According to the problem statement, the force is proportional to the length of the cut, which
we denote by l. We can write

F = kl ,

where k is a constant of proportionality. If we make the cut dx deeper, we do the work dW .
When cutting through the entire apple, we perform the work

W =
∫

kl dx =
∫

k dS = kS ,

so the work is directly proportional to the area of the cut.
The area of the first cut is in the shape of a circle. Its radius is according to the Pythagorean

theorem r =
√

R2 − a2. Thus, the area of the first cut is S1 = π
(
R2 − a2).

The plane of the last cut is also at a distance a from the center and the shape of the cut is
a subset of a circle, whose radius is also r. A strip of width 2a is cut out from this circle, and
we need to calculate its area.

The chord intersecting the circle has a length 2t = 2
√

r2 − a2 according to the Pythagorean
theorem. From the circle’s center, we see it at an angle 2α = 2 arctan(t/a). The area of the
circular sector with this central angle is Sv = (2α/2π)πr2.

Now, let us calculate the area of the triangle ABS. It is St = ta. The area of the segment is,
therefore, Su = Sv − St = αr2 − ta. We subtract the area of this segment two times (for each
side) from the area of the circle with a radius r, so the area of the last cut is

S2 = (π− 2α) r2 + 2ta =
(
π− 2 arctan

(√
R2 − 2a2

a

))(
R2 − a2)+ 2a

√
R2 − 2a2 .

The ratio of work we are looking for is equal to the ratio of the areas, which is

S2

S1
=

(
π− 2 arctan

(√
R2−2a2

a

))(
R2 − a2)+ 2a

√
R2 − 2a2

π (R2 − a2)
.= 0.251 .

2α

2a

r
2t

A

B

S

Fig. 1: The cut of the apple.

Jaroslav Herman
jardah@fykos.org
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Problem DB . . . emergency and problematic
“Fireman” jumps onto the pole, but suddenly the pole breaks off the ground, and he begins
reassessing the situation. He will either fall with the pole to the floor, holding onto the top of
the rod throughout the whole fall. Or he may let go of the bar and free fall from the initial
height. What is the ratio of the impact velocities from the first and second situations? The
length of the pole is l, its mass is M , and the mass of the fireman is m.

Consider zero initial velocity in both cases, and the pole rotates about an axis passing
through the broken end just off the ground. The size of the “fireman” is negligible compared to
the length of the pole. Pepa wanted to call “fireman”.

Let us look at the first case, where the fireman holds onto the pole and falls with it. In this
case, the whole system is in rotational motion around the base of the pole. We will calculate
the impact velocity using the law of conservation of energy. In the beginning, the rod is per-
pendicular to the ground, so its center of gravity is at height l/2; and the firefighter’s center of
gravity is at height l. The potential energy of the whole system in the beginning is

E0 = mgl + Mg
l

2 .

At the end of the fall, the total kinetic energy of the system is equal to

E = 1
2Iω2 ,

where I is the moment of inertia of the entire system. We can calculate it as the sum of moments
of inertia, both the fireman: Ih = ml2 and the pole, which in case of rotation about one end
equals It = Ml2/3. Thus we get the equation

mgl + Mg
l

2 = 1
2

(
ml2 + 1

3Ml2
)

ω2 .

Now, we can express the fall velocity of the fireman v1 = ωl:

2
mgl + Mg l

2

m + 1
3 M

= v2
1 ,

v2
1 = 2gl

m + M
2

m + M
3

,

v1 =

√
2gl

m + M
2

m + M
3

.

In the second case, the fireman will let go of the rod immediately, i.e., he will experience free
fall. We can once again use the law of conservation of energy. In the beginning, he has only
potential energy mgh; and in the end, only kinetic energy

mgl = 1
2mv2

2 ,

v2
2 = 2gl ,

v2 =
√

2gl .
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So the ratio of the fall velocities in both cases is

v1

v2
=

√
m + M

2

m + M
3

.

Note that for a non-zero mass of the rod, we get that the fireman holding onto the pole will
fall with greater impact velocity compared to the case when he lets go of it immediately.

Kateřina Rosická
kacka@fykos.org

Problem DC . . . floating
Let us have a buoy made of a hollow sphere of outer radius r = 51 cm and thickness t =
= 1 cm whose material has density ρ = 854 kg·m−3. A rod of linear density λ = 0.74 kg·m−1

is attached to it on the outside perpendicular to the sphere’s surface. In the buoy, there is a
weight of mass mz = 1.12 kg (of negligible dimensions), which is fixed inside the sphere on the
opposite side as the rod.

The buoy floats on the water; the rod is initially in a vertical position above the sphere.
What can be the maximum length of the rod l so that the buoy is stable, i.e. the buoy returns
to its original position after a small deflection? Martin and the mechanics exam.

The position where the rod is vertically above or under the buoy is the equilibrium position.
That follows from symmetry. However, one of these vertical positions is stable, while the other
is unstable. A stable equilibrium is one, where there is (locally) a minimum of potential energy.
In an unstable equilibrium, there is a maximum of potential energy. We need to express the
potential energy as a function of the deflection of the rod with respect to the vertical direction
above the buoy.

The mass of the whole buoy is constant, so the same volume of the buoy will be submerged
at all times. Moreover, the rod will not go under the water when deflected by a bit, so the
submerged part will always have the shape of a spherical cap of radius r and with a given
volume. Therefore, even though the hollow sphere may shift a bit in the horizontal direction
by tilting the buoy in the vertical direction, the sphere will remain at the same height. That
implies two things – the potential energy of the sphere itself does not change because its center
(which is also the center of gravity) does not change its height; the potential energy of the water
in which the buoy floats does not change either.

It remains for us to calculate how the potential energy of the weight and the rod changes.
The weight is fixed on the inside of the sphere at a distance r − t from the sphere’s center. If we
put the zero point of the height to the center of the sphere, the potential energy of this weight
will be mzg(r − t)(− cos φ), where φ is the angle that the rod makes with the vertically upward
direction.

The mass of the rod will be mt = lλ, and the distance and its center of gravity will be in
the center of the rod. The center of gravity will be at a distance r + l/2 from the center of the
sphere, and its potential energy will be lλg(r + l/2) cos φ. The sum of the potential energy of
the weight and the rod will be

Ep(φ) = g(lλ(r + l/2) − mz(r − t)) cos φ .
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The cosine has a local maximum in φ = 0; if we want a local minimum for the position when
the rod direction is vertically upwards, the expression in the brackets must be negative. We get
a condition

0 >
λ

2 l2 + rλl − mz(r − t) .

The discriminant is D = r2λ2 + 2λmz(r − t), therefore the roots are

l1,2 =
−rλ ±

√
r2λ2 + 2λmz(r − t)

λ
,

where the negative root does not interest us and looking at the initial inequality, we see that the
positive root gives us an upper bound for the length of the rod at which the vertically upward
position will still be stable. This maximum length is

lmax = −r +

√
r2 + 2mz(r − t)

λ
= 82 cm .

Notes: Looking again at the inequality we derived, we see that this condition is equivalent to
the condition that the resulting center of gravity is below the center of the sphere. That makes
sense because when the buoy rotates, the center of gravity goes up, and its potential energy
therefore increases.

How would we solve this through the forces? The important points would again be the center
of gravity of the buoy and the center of buoyancy, which is the point at which we could place
the center of buoyant force. This point is obviously (by symmetry) somewhere below the center
of the sphere. So, when we deflect the buoy, the center of gravity and the center of buoyancy
will not be directly under each other, and thus the forces acting in the two centers there will be
spinning the buoy with their torque. In case the center of gravity is lower than the center of the
sphere, this torque will counteract the deflection, and therefore it will be in a stable position
and vice versa.

Šimon Pajger
legolas@fykos.org

Problem DD . . . snowfall
Overnight, 6 cm of snow fell, so in the morning, Jarda went to shovel it out of the sidewalk. He
took a big shovel with a width of d = 60 cm, put it on the ground, and started pushing it in
front of him with a velocity of v = 0.6 m·s−1. In this process, the snow with a density of ρ =
= 120 kg·m−3 accumulates on the shovel. The coefficient of friction between the shovel and the
ground is f = 0.6; do not account for the shovel’s mass. How long will it take Jarda to stop if
he can exert a maximum force of F = 60 N? Consider that snow on the shovel moves with the
shovel. Jarda’s greenhouse is covered in snow...

The snow shovel is subject to two forces. The first is a frictional force of magnitude Ft = fFN =
= fmg, where m is the mass of snow on the shovel and g is the gravitational acceleration. In
addition, Jarda must accelerate the accumulated snow to a velocity v, which requires another
part of the force Fp. The mass m of the accumulated snow increases with time as m = ρhdvt,
so the corresponding force is

Fp = dm

dt
v = ρdhv2 ,
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where h is the height of the snowfall, d is the width of the shovel. We see that the force is
constant over time.

Thus, the total force exerted by the Jarda is

Fp + Ft = ρdhv (v + tgf) .

Putting F = Fp + Ft gives us the time

t = F

ρdhvgf
− v

gf
= 3.8 s .

Jaroslav Herman
jardah@fykos.org

Problem DE . . . USA annexes
The border between Canada and the USA is said to contain the longest straight line, which
length is l = 2 057 km. However, this is not true because this part of the border runs along the
forty-ninth circle of latitude. Calculate by how many kilometers the length of this “straight”
part of the border would be reduced if it were a truly straight line (i.e., the shortest line)
running along the surface of a sphere whose endpoints remained the same.

Matěj is fascinated by strange borders https://www.youtube.com/shorts/caJeL1sjqJQ.

It is not a straight line because the circles of latitude (except the equator) are not straight.
If we wanted to walk along a circle of latitude, we would have to keep turning slightly. The
forty-ninth circle of latitude is a circle with radius r = R⊕ cos 49 ◦. The current border between
Canada and the USA is a circular arc with an angle of α = l/r. The actual distance of the
endpoints in 3D space is d = 2r sin(α/2).

A straight line running along the surface of a sphere is always a circle centered at the
center of the sphere and with radius R⊕. This is because it is the shortest path on the surface
that connects the two points. To calculate the magnitude of the angle β of the arc of a truly
straight border, we use the same formula as in the paragraph above, but in the inverse form β =
= 2 arcsin (d/(2R⊕)). The length of this arc is, therefore, βR⊕. Putting it together, we get

∆l = l − 2R⊕ arcsin
(

cos 49◦ sin l

2R⊕ cos 49◦

)
= 12 km .

Note: the notion of a straight line on a curved surface (e.g., the surface of a sphere) has
a precise definition in differential geometry. These lines are called geodesics and have a special
meaning in general relativity. Here, geodesics describe the trajectories of objects in 4D space
that is curved by the presence of physical bodies (to give an idea, e.g., the motion of things
falling into a black hole).

Matěj Mezera
m.mezera@fykos.org
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Problem DF . . . wind velocity
On a warm summer afternoon, Robo hides from a storm under a shelter where he stands at
a distance R = 1.2 m from the edge. At what velocity is the wind blowing against him if it is
pouring down on him from his feet to his shoulders? The shelter’s roof is at height H = 2.3 m,
and Robo’s shoulders are at height h = 1.5 m. Assume that the wind blows only horizontally
and that the droplets are subject to air resistance (drag). Assume the droplets to be small
spheres with radius r = 0.8 mm. The drag coefficient for a sphere is C = 0.5.

Rain is fine if you have a place to hide.

First, let us note that droplets move at a constant velocity. In the vertical direction, air resistance
acts on them, and in the horizontal direction, they are carried by the wind.

When we draw a picture, we see that we get a right triangle with legs R and H − h and
a hypotenuse that characterizes the trajectory of the droplet. We’ll denote the angle between
the hypotenuse and leg R θ and note that the same angle is formed by the velocity components
vx in the horizontal direction and v in the direction of the droplet’s trajectory. Then

tan θ = H − h

R
= vy

vx
,

where vy is the steady velocity component in a vertical direction. This velocity is determined
from the equilibrium of the gravitational force Fg of the droplet and the drag force Fo. Thus

Fg = Fo ,

mg = 1
2CSρv2

y ,

4
3πr

3ρwg = 1
2Cπr2ρv2

y ,

vy =
√

8gρwr

3Cρ
,

where we used the spherical shape of the droplet and its cross-section S = πr2. The density of
water is ρw, and the air density is ρ. We noted that the droplet’s component vx is purely made
up of the wind velocity, and so we get a final expression for the wind velocity

vx = R

H − h

√
8gρwr

3Cρ
= 8.9 m·s−1 .

Robert Jurenka
robert.jurenka@fykos.org

Problem DG . . . race of shadows
Legolas was walking at night along a sidewalk parallel to street lights, observing the movement
of his shadows on the ground. The lights, however, were of varying heights, so the shadows
moved strangely. Lego wants to calculate the speed at which the two shadows cast by his head
move relative to one another. Assume Legolas’ head is a point at height hh = 1.7 m, moving
at speed v = 1.5 m·s−1. Lamps are placed on a straight line that is d = 2.1 m away from the
line that Lego is walking on, and the bases of the lamps are l = 13 m apart. Their heights
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are h1 = 3.1 m and h2 = 3.6 m and think of them as point sources. Legolas is interested in the
magnitude of the relative speed of the shadows when he is separated from the bases of both
lamps equally. Legolas was walking down the sidewalk.

The triangle given by the head’s shadow, Lego’s head, and Lego’s feet is similar to the triangle
given by the head’s shadow, the base of the lamp, and the point source itself. Hence their angles
are identical.

If we project the whole situation into a plane perpendicular to Lego’s direction, we see
Lego’s projection will not move at all; namely, Lego’s feet will be away from the base of the
lamp by d. Thus, the shadow in this projection will not move either and will be at distance t1,2
from the lamp’s base, where (from the similarity triangles)

t

h1,2
= t − d

hh
,

d
h1,2

h1,2 − hh
= t1,2 .

Thus, the velocities of the shadows are parallel to the direction in which Legolas is walking.
Since the velocity of one shadow with respect to the other is given by the difference between
these two vectors, we see that it is sufficient to subtract their magnitudes.

So what are those magnitudes? Again we use the similarity of triangles, this time as seen from
the top view. We remember Lego’s original position and the original position of the shadow
and let Lego move. Then the triangle formed by the lamp and the Lego’s original and new
position is similar to the triangle formed by the lamp and the original and new position of the
shadow. Since we also know that the ratio of the distance between the shadow and the lamp to
the distance of the Lego and the lamp is t1,2/d, we know that the ratio of shadow displacement
to Lego’s displacement is the same. Thus, the shadow of Lego’s head moves t1,2/d-times faster
than Lego’s, that is v1,2 = vt1,2/d.

It only remains, to plug in the numbers and subtract these two magnitudes of velocity

∆v = v1 − v2 = v

d
(t1 − t2) = ,

∆v = v

d

(
d

h1

h1 − hh
− d

h2

h2 − hh

)
,

∆v = v
hh(h2 − h1)

(h2 − hh)(h1 − hh) ,

∆v = 0.48 m·s−1 .

Šimon Pajger
legolas@fykos.org

Problem DH . . . termoanemometer
To measure the speed of water flow in a tube, we can use a wire, which we place into the tube.
We run a constant current I = 200 mA through the wire and measure the voltage on it. For
volumetric flow Q = 70 ml·s−1 we measured the voltage U = 522 mV. We then increased the
flow rate by ∆Q = 8 ml·s−1 while keeping the same current, and the voltage dropped by ∆U =
= 25 mV due to the temperature change of the wire resistance. How did the average temperature
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of the fluid change after passing through the device compared to the first measurement? Also
state whether the temperature is now higher or lower.

Jarda has heard of a device with a strange name.

Let us denote the temperature of the water before entering the device by T0. In the first case,
the temperature of the water after exiting the device is

T1 = T0 + IU

Qρc
,

where c is specific heat capacity of water and ρ its density. In the second case, it holds

T2 = T0 + I (U − ∆U)
(Q + ∆Q) ρc

.

We then subtract these two equations and obtain the result

T2 − T1 = I

ρc

(
U − ∆U

Q + ∆Q
− U

Q

)
= −5.2 · 10−5 K .

Jaroslav Herman
jardah@fykos.org

Problem EA . . . clumsy Danka
Danka dropped a small ball with a mass m = 10 g from a height h = 1.3 m above the floor so
that it landed on the “bosu” at a horizontal distance x0 = 5 cm from its axis of symmetry and
bounced off it elastically. How far from the axis of the bosu did the ball fall after the bounce?
The bosu is a rubber exercise mat shaped like a hemisphere with a radius of the base equal
to 29 cm. Assume that the bosu does not move on impact. Danka’s brother owns bosu.

The ball’s movement consists of a free fall, a perfectly elastic bounce from the bosu, and
a parabolic projectile motion. Let’s look at them one at a time. The height at which the ball
bounces off the bosu indicates how much of its potential energy is converted into kinetic energy,
giving us the initial velocity of the projectile motion. We shall introduce a coordinate system
with the origin at the center of the base of the bosu. The x-coordinate defines the horizontal
distance from the center of the bosu, and the y-coordinate determines the vertical distance. Let
us denote by y0 the height at which the ball bounces from the bosu. We can calculate it by
applying Pythagorean theorem to the triangle in the figure as

y0 =
√

r2 − x2 .= 28.565 7 cm .

Using the law of conservation of energy, we then calculate the velocity v0 of the ball after
bouncing as

mg(h − y0) = 1
2mv2

0 ,

v0 =
√

2g(h − y0) .= 4.461 1 m·s−1 .
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Next, we need to calculate the angle of the ball’s velocity after bouncing off the bosu with
respect to the horizontal plane. Let us denote the angle by θ. When we consider a perfectly
elastic collision, the angles of incidence and ricochet are identical. We see in the figure that

90 ◦ = 2α + θ .

We calculate the angle α using the aforementioned triangle as

α = arcsin x

r
.

We get
θ = 90 ◦ − 2 arcsin x

r

.= 70.14 ◦

Then we compute the components v0x and v0y of the velocity at the beginning of the projectile
motion as

v0x = v0 cos θ , v0y = v0 sin θ .

Now we know both the initial coordinates and the initial velocity components. We can
therefore write the equations of motion

x = x0 + v0xt , y = y0 + v0yt − 1
2gt2 .

Time t starts when the ball bounces off the bosu. When the ball hits the ground, its y-coordinate
is zero. From there, we get the quadratic equation

0 = y0 + v0 sin θt − 1
2gt2 ,

and consequently, the variable t

t =
v0 sin θ ±

√
(v0 sin θ)2 + 2gy0

g

.= 0.918 8 s .

Since we are looking for a positive value of time, the only real solution is the one with
a positive sign in front of the square root. The final step is to plug this expression into the
equation for x, and get the numerical result.

Ideally, the resulting equation for x should contain only the quantities defined in the problem
statement. In this case, however, the relationship would be too intricate, and it is very easy to
make a mistake when substituting numerical values in. Therefore, it is better to calculate the
partial results of the crucial variables with sufficient precision, as we have indeed done while
solving this problem, and plug these into the final formula. We arrive at the result that the ball
hits the ground at distance x = 1.44 m from the bosu’s axis.

Daniela Dupkalová
daniela@fykos.org
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α

α
α

θ

r

xo

r

Fig. 2: A sketch of the situation.

Problem EB . . . simplified trebuchet
l

M
mλ

The arm of a trebuchet has a length of l = 9.14 m, with the axis
of rotation dividing it in a ratio of 1 : 5. The linear density of
the arm is λ = 10 kg·m−1. For simplicity, assume that the weight
and the projectile are mass points attached at the ends of the
arm. The weight has a mass of M = 15 t and is attached at the
shorter end. The projectile has a mass m = 60 kg and is attached
at the longer end. What is the angular acceleration when the arm is horizontal?

Legolas does not need just pulleys. . .
Probably the most straightforward way to get the angular acceleration is to divide the total
torque of the system by the total moment of inertia, all of which must be calculated with respect
to the axis of rotation. Since both quantities are additive, we can calculate them by summing
contributions from the weight, projectile, and arm.

The torque of the weight is simply Mz = Mgl/6. Similarly, the torque of the projectile
is Mp = −5mlg/6, where we used the minus sign to reflect that this torque tends to rotate the
arm in the opposite direction as the weight. The torque of the arm itself also acts in the opposite
direction. Its mass is lλ and its center of gravity is at a distance 2l/6 = l/3 from the axis of
rotation. The torque of the arm is, therefore Mr = −gλl2/3. The resulting torque acting on the
arm with respect to the axis of rotation is

Mv = Mz + Mp + Mr = gl
(

M

6 − 5m

6 − lλ

3

)
.

Moment of inertia of a point mass m, with respect to the rotational axis at distance r is mr2,
thus the moment of inertia of the weight is Jz = Ml2/36 and the moment of inertia for the
projectile is Jp = 25ml2/36.

The moment of inertia of the arm about its center is ml2/12. But we need the moment of
inertia about the axis of rotation. We can get this using Steiner’s theorem, i.e., by adding mr2,
where r is the distance between the center of gravity of the arm and the axis of rotation,
in our case l/3. All in all, we get

Jr = J0 + JS = 1
12λl3 + 1

9λl3 = 7
36λl3 .
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The resulting moment of inertia is therefore calculated as

J = Jz + Jp + Jr =
(

M

36 + 25m

36 + 7
36λl

)
l2 .

Now, we just need to substitute obtained results into the formula for angular acceleration

ε = Mv

J
=

gl
(

M
6 − 5m

6 − lλ
3

)(
M
36 + 25m

36 + 7
36 λl

)
l2

ε = 6g

l

M − 5m − 2lλ

M + 25m + 7λl
= 5.5 s−2 .

Šimon Pajger
legolas@fykos.org

Problem EC . . . repulsive 2D snowman

R =?

r
r/e

λWe have a conductive ring with linear resistance λ and radius r.
We also have a ring of the same material but with a radius e-times
smaller. Surprisingly, we gradually found infinitely many more
such rings, each with a radius of 1/e compared to the previous
one. We arrange them side by side in the shape of a snowman and
connect them conductively. What will be the total resistance of
this shape between the endpoints on the axis of symmetry? Do not disturb Jarda’s circles.

First, we determine the ratio between the two opposite sides of a circle of radius R. These are
actually two resistors in parallel, each with a resistance πrλ. The total resistance of the ring is
thus R0 = πrλ/2.

This relationship holds for each of the rings. Once we connect them conductively in series,
their total resistance is given by the simple sum. The only thing that changes for each ring is
its radius. We get

Rc = πrλ

2

∞∑
n=0

1
en

= πrλ

2
e

e − 1 ,

where we used the formula for the sum of an infinite series.
Jaroslav Herman
jardah@fykos.org

Problem ED . . . searching for a type II civilization
Organizers of FYKOS are flying through space, looking for new civilizations to where they could
expand. So far, they have found only one ring that could be a remnant of a Dyson sphere. It has
a radius of R = 1.2 · 108 m, but the organizers are also interested in its mass. Therefore, they
flew to the ring’s center with their rocket and then moved perpendicularly to its cross-section.
When they waited long enough, they discovered that their oscillatory period was T = 60 h.
What is the total ring’s mass if we assume that the mass is uniformly distributed and the
amplitude of the oscillations is an order of magnitude smaller than R? Pepa likes to swing.
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Firstly, we will calculate the force F exerted on the organizers when they are displaced by a small
distance z in the direction of the ring’s axis. A ring’s element of mass dM will then exert a force
with a magnitude dF = Gm dM/(R2 + z2) on the organizers. When summing these forces, the
components in the ring’s cross-section cancel out. Only the components perpendicular to the
plane of the ring will remain, and for them, we can write

dFz

dF
= sin φ = z√

(R2 + z2)
,

where φ is the angle, which is given by the line connecting the organizers to the element dM
and the ring’s cross-section. For dFz the following holds

dFz = Gm dM
z

(R2 + z2) 3
2

.

In order to get the total force in the perpendicular direction to the ring’s cross-section, we
need to sum all these infinitesimal contributions. But notice that the force component dF is
the same for all elements dM . The sum(integral) is then drastically simplified, and we get the
total force as

Fz = GmM
z

(R2 + z2) 3
2

.

Now recall that the displacement z is small so we can neglect its second power in the
denominator, and hence Fz = GmMz/R3. The stiffness therefore is

k = GmM

R3 .

The final thing we need to do is to plug this formula into the equation for the period of a linear
harmonic oscillator

T = 2π
√

m

k
= 2π

√
R3

GM
,

from where we can express the total mass of the ring as

M = 4π2 R3

GT 2 = 2.2 ·1025kg .

Šimon Pajger
legolas@fykos.org

Problem EE . . . Doppler on a stroll
Christian Doppler took a stroll. After a while, he noticed that in both directions (in his direction
and the opposite direction), people are walking at velocity v = 1.0 m·s−1 and with l = 4.0 m
spaces between them. He decided to take advantage of this to find the speed at which he must
move to meet as few people as possible. How fast should he walk to meet the least number of
people in time T ≫ l/v? Find all solutions. Legolas is very neuroatypical.

Let us denote vD the speed of Doppler. The time between the meeting of the two bypassers will
be

tp = l

v + vD
.
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Therefore, the frequency of the meeting of the bypassing people is

fp = 1
tp

= v + vD

l
.

Similarly, the frequency of meeting people going in the same direction will be

fr = 1
tr

= |v − vD|
l

.

The absolute value then divides the solution into two cases where the passers-by bypass2 Doppler
(vD ≤ v), and the case where the Doppler bypasses the passers-by (vD ≥ v).

The number of people the Doppler meets is the product of the total frequency of meetings
and the time T . Total frequency means the sum of the frequencies of meeting people in one
direction and the other. Actually, it is more like an average frequency, but since we only need
the total number of people Doppler meets and we know he meets a lot of people (because
T ≫ l/v), this figure is perfectly enough.

To get rid of the absolute value, let us split the problem into the cases discussed above.

Passer-by bypass Doppler (vD ≤ v)
The final frequency will be

fv1 = v + vD

l
+ v − vD

l
= 2v

l
,

which is a constant independent of the speed of Doppler. Therefore, the total number of people
he meets will be

N1 = fv1T = 2v

l
T .

Doppler bypasses the passers-by (vD ≥ v)
The final frequency will be

fv2 = v + vD

l
+ vD − v

l
= 2vD

l
.

Therefore, the total number of people he meets will be

N2 = fv2T = 2vD

l
T ,

so if the speed is greater than v Doppler will always meet more than N1 people. Thus, the
minimum number of people he will meet in a given time is N1, and he will meet that many if he
walks at a speed less than or equal to v, so our solution (since we had to find all the solutions)
is [0, v] or [−v, v] if we assume he can also go in the opposite direction.

It is worth noting that if we interpret the crowd of passers-by as a wave with wavelength
l and wave speed v, i.e. with frequency f0 = v/l, we get by expanding the expression for the
frequency of meeting

fp = v + vD

l

v

v
= v + vD

v
f0 ,

which is the relation for the Doppler effect with a moving observer, as well as by analogy for fr.

Šimon Pajger
legolas@fykos.org

2even if they travel at the speed
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Problem EF . . . pigeon doesn’t fall far from the stone
A pigeon with a mass M = 300 g is flying h = 30 m above the ground at velocity V = 20 km·h−1.
Suddenly, he is hit from behind (i.e., in the direction of his velocity) by a stone thrown from
the ground with a mass m = 100 g, and the pigeon blacks out. The stone, which was at the
highest point of its trajectory at that moment, flew with velocity v = 30 km·h−1 and lost half
of its kinetic energy. Determine how far the pigeon’s lifeless body falls from the spot where the
rock was thrown. Coo.

First, we determine the horizontal distance from the point from which the stone was thrown
to the collision point. We know that at that moment, the stone was at the highest point of its
trajectory, so the vertical component of its velocity was zero. From this, we can calculate the
time from the moment the rock was thrown as

h = 1
2gt2 ⇒ t =

√
2h

g
.

The horizontal component of the velocity will remain constant throughout this entire period,
so the stone will travel the distance

d = v

√
2h

g
.

in the horizontal direction. Now we focus on the collision. If the stone had lost half of its kinetic
energy, it moved after the collision with a velocity v′, which we determine as

1
2mv′2 = E′

k = 1
2Ek = 1

2m

(
v√
2

)2

⇒ v′ = v√
2

.

Therefore, from the law of conservation of momentum for the velocity of a lifeless body of the
pigeon V , the following will hold

MV + mv = MV ′ + m
v√
2

⇒ V ′ = V + mv

M

2 −
√

2
2 .

At this velocity, the pigeon will fly for
√

2h/g, for a total horizontal distance

s =
(

V + mv

M

2 −
√

2
2

)√
2h

g
.

So the answer to the question in the problem statement is

s + d =
(

V + mv

M

2 −
√

2
2 + v

)√
2h

g
= 36 m .

Vojtěch David
vojtech.david@fykos.org
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Problem EG . . . dishwasher

α

D

Q

α
s

Inside the dishwasher is a rotating propeller, into which water flows with
the volumetric flow rate Q through its center. The water causes the pro-
peller to rotate in a horizontal plane and flows radially inside it in tubes
with cross-sectional area S on both sides. At the ends of the propeller
are holes with cross-sectional area s, through which the water sprays and
washes the dishes. The direction of the water is tangential to the rota-
tion and forms an angle α with the horizontal plane. What is the angular
frequency of the propeller if its diameter is D?

Jarda cleaned the dishes after party, and his head was still spinning.

Let us first consider the system associated with the propeller. Water flows
into the propeller with a flow rate of Q, and as usual, all water that flows into the propeller
along the axis of symmetry must also flow out through the holes at the ends. Let us denote the
speed at which water flows out as v and the cross-sectional area of one hole as s. Thus, the flow
rate from each hole at the end is

vout = Q

2s
,

since Q is the flow rate for both halves of the propeller.
By changing the direction of the water from radial to tangential at the ends of the propeller,

the water changes its angular momentum. And consequently changing the angular momentum
of the propeller. The torque, i.e., the change in the angular momentum of the whole propeller,
is

M1 = dL1

dt
= 2RQ cos α

2s

Qρ

2
dt

dt
= Q2ρR cos α

2s
.

However, in our reference frame, the Coriolis force acts on the water flowing in the tube.
It acts perpendicular to the direction of the water flow, thus creating an angular momentum.
On the element of the water with a length dx, which is at a distance x from the center, acts
a torque with magnitude dM2 = x2ω Q

2S
Sρ dx. Here Q/2S denotes the radial velocity of the

water in the propeller. The total torque due to the Coriolis force is

M2 = 2
∫ R

0
xωQρ dx = R2ωQρρ, .

Since we are interested in a steady state of the system and these two torques act against
each other, by equating them: M1 = M2, we can obtain the rotation frequency as

ω = Q cos α

Ds
,

where we substituted for R = D/2.

Jaroslav Herman
jardah@fykos.org
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Problem EH . . . watering the flower bed
Jarda’s garden hose ends with a ”gun” that divides the water beam into many smaller ones.
Suppose that these small beams originate from a hemispherical cap at the end of this gun and
that water gushes from all its points at the same velocity in a direction perpendicular to the
tangent plane at that point. When Jarda lets the water squirt out of the gun pointing straight
up, holding it at a height h, the water hits the surface A. How large of an area will the water
fall on if he points the gun horizontally? The radius of the cap is small compared to the other
sizes. The garden is a highly inspiring environment for Jarda.

When Jarda holds the hose upwards, the water falls on the surface A, which is a circle of
radius r. We can define this radius as the maximum possible distance that water can reach
for each nozzle of a single hose with the same velocity at the same height h. Assume that this
distance is reached for some inclination angle φ0. The points with this angle form a circle on
the hemispherical cap. When Jarda turns the hose such that it points horizontally, only half
the number of points of this circle will be at the current position of the cap. At the same time,
the water in that semi-plane will splash above and below the gun, but no longer backward. The
resulting area on which the water falls will therefore be half of a circle with the same radius r,
so the area will be A/2.

Kateřina Rosická
kacka@fykos.org

Problem FA . . . too fast electron
What atomic number would an element have to have for the ground state speed of an electron
in a shell in order to exceed the speed of light, if we do not consider relativistic corrections?
Use the Bohr model of the atom and assume that the atom is ionized to exactly one electron.

Jarda can’t keep track of how much work there is in FYKOS.

In the Bohr model of the atom, we assume that the electron orbits the nucleus of the atom along
a path that is curved by the electrostatic interaction between the nucleus and the electron. This
results in a circular motion similar to the orbit of the planets around the Sun.

However, as observed, atoms can emit light only at certain wavelengths. The energy of this
emitted light depends on the change in the radius of the trajectory. Since the spectrum of these
radiated energies is discrete, electrons can orbit the nucleus only at certain discrete distances.

So much for the introduction. In the Bohr model of the atom, it is postulated that electrons
orbit only on orbits on which the magnitude of the angular momentum is L = nℏ, where n
is the number of the shell on which the electron orbits, and ℏ = h/2π is the reduced Planck
constant. For the ground state of the electron we have n = 1.

In a force interaction, the magnitude of the centrifugal force is equal to the attractive
electrostatic interaction

Fd = me
v2

r
= Fe = 1

4πε0

Ze2

r2 ,

where me is the mass of the orbiting electron, v is the orbital velocity, r is the distance from
the nucleus, Z is the number of protons in the nucleus, ε0 is vacuum permitivitty, and e is the
elementary charge.
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Now, we use the aforementioned condition for the magnitude of the angular momentum,
which is

L = merv = nℏ .

From this equation, we express r and insert it into the previous equation. This gives us

v = Ze2

4πε0nℏ
.

After substituting for v = c, n = 1 and expressing Z. We obtain

Z = 4πε0ℏc

e2
.= 137.065 .

The inverse of this result is called the fine-structure constant. Now we need to proceed
carefully – the charge of the nucleus has to be an integer. But if we substitute Z = 137 into
the formula for the speed, we get the orbital velocity v = 2.997 · 108 m·s−1 which is, however,
a lower value than c = 2.998 ·108 m·s−1. Therefore, the charge we are looking for has to be even
higher, hence the answer is Z = 138.

An element with so many protons has not been observed yet. Moreover, according to the
assumptions made in the problem statement, it would have to be 137 times ionized, which is
a lot. Furthermore notice that the result is not far away from the atomic numbers of the heavy
elements, for which special relativity has to be accounted for.

Finally, let us note that the Bohr model of the atom gives, in first approximation, the same
structure of the electron shell as more advanced quantum models, but it does not describe the
physical nature correctly.

Jaroslav Herman
jardah@fykos.org

Problem FB . . . annihilation peak
Far from a material with a thickness t, we will place a source of gamma rays with an energy of
approximately 2 MeV. The radiation has an absorption coefficient of mu1 in the material. For
radiation of this energy can happen that a photon converts into an electron-positron pair inside
the material (the loss in intensity due to this effect is already included in the µ1 coefficient).
However, the positron immediately annihilates with an electron and produces 2 gamma flashes,
each with energy Eγ = 511 keV. The absorption coefficient of the material for the radiation
with this energy is µ2. We place a detector far behind the material and observe the intensity of
radiation of the energy Eγ . For what thickness of material t will this intensity be the largest?
Hint: The infinitesimal loss of gamma-ray intensity in a material is proportional to the mag-
nitude of the intensity, the absorption coefficient, and the unit of distance.

Jarda keeps losing photons somewhere.

From the hint, we derive the relation according to which the intensity I (i.e., the number of
photons in the radiation beam) decreases as a function of the distance in the material. Namely,
− dI = µ1I dx, which is a differential equation that we solve by separation of variables to get
the expected relation

I(x) = I0e−µ1x ,
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where I0 is the intensity before entering the material and x is the depth at which the intensity
is calculated.

Some of this radiation is converted into an electron-positron pair. We assume that the
probability of this effect does not depend on the position of the material, so the intensity of
the E radiation is proportional only to I(x). Thus, most of this radiation is produced at the
beginning of the material, and the least at the end.

Once a gamma ray of energy E is produced and begins propagating through the material,
it is also attenuated, now with a coefficient of µ2. Let the intensity of this radiation dJ0 occur
in the dx-neighbourhood of the x coordinate. According to the formula above, this intensity
drops after exiting the material to

dJ = dJ0e−µ2(t−x) ,

since the radiation has now passed a distance t − x in the material.
But the resulting intensity dJ0 is proportional to I(x) and the length dx through some

proportionality coefficient α, which we write as

dJ0 = αI(x) dx = αI0e−µ1x dx .

Substituting into the previous equation and integrating over the entire thickness of the material
gives the total radiation intensity with energy E as

J = αI0

∫ t

0
e−µ1xe−µ2(t−x) dx = αI0e−µ2t

∫ t

0
e(µ2−µ1)x dx = αI0e−µ2t

µ2 − µ1

(
e(µ2−µ1)t − 1

)
.

The maximum intensity is found by a derivative with respect to t

dJ

dt
= αI0

µ2 − µ1

(
−µ2e−µ2t

(
e(µ2−µ1)t − 1

)
+ e−µ2t (µ2 − µ1)

(
e(µ2−µ1)t

))
,

which we set equal to zero. We get

0 = −µ2e(µ2−µ1)tm + µ2 + (µ2 − µ1) e(µ2−µ1)tm ,

from which
µ1e(µ2−µ1)tm = µ2 ,

and now we can simply express the thickness for which the intensity is extremal as

tm = 1
µ2 − µ1

ln
(

µ2

µ1

)
.

Looking at the relation J(t), it can be seen that J is positive for all (positive) t, and that for
points t = 0 and t = ∞, J decreases to zero. Thus, in computing the zero derivative of J(t),
we have indeed found the maximum of this function.

Regardless of which of the absorption coefficients is larger, it is clear that the thickness tm
is positive. If µ2 is close to µ1, our relation also holds in this limit.

Jaroslav Herman
jardah@fykos.org
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Problem FC . . . evil chandelier
When Jarda is at home, he often happens to bump his head against the chandelier in the kitchen.
The chandelier has the shape of a cylindrical shell without bases, a height of h = 27 cm, and
a radius of R = 12 cm. In the upper part of the chandelier, a massless bar runs across its
diameter. At the center of this bar, a rope by which the chandelier hangs from the ceiling is
attached. The length of the rope is l = 42 cm. What is the period of the small oscillations of
the chandelier when Jarda deflects it?

To find the period of the small oscillations we use the relation for a physical pendulum

T = 2π
√

J

mgd
,

where J is the moment of inertia of the oscillating body with respect to the axis of rotation, m
is the mass of the body, g is the gravitational acceleration and d is the distance of the center of
gravity from the axis of rotation. The distance of the center of gravity from the axis of rotation
is clearly d = l + h/2.

The moment of inertia with respect to the axis of rotation is given by Steiner’s theorem as

J = JT + md2 ,

where JT is the moment of inertia with respect to the axis running through the center of gravity
of the body and has to be determined by integration.

Consider a thin circular element of the chandelier of thickness dx at a distance of x from the
center of the chandelier and mass dm = m dx/h, where m is the mass of the whole chandelier.
Relative to the center and the axis passing perpendicularly to the axis of symmetry, this element
has a moment of inertia

dJT = 1
2R2 dm + x2 dm ,

where we used again Steiner’s theorem. The factor 1/2 appears due to the moment of inertia
of the thin ring with respect to the axis perpendicular to the axis of symmetry.

By integration we obtain

JT = m

h

∫ h
2

− h
2

(1
2R2 + x2

)
dx = m

h

[1
2R2x + 1

3x3
]h

2

− h
2

= m
(1

2R2 + 1
12h2

)
.

Thus, the solution to the problem is

T = 2π

√
1
2 R2 + 1

12 h2 +
(
l + h

2

)2

g
(
l + h

2

) = 1.53 s .

Jaroslav Herman
jardah@fykos.org
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Problem FD . . . sphere in the road curve
Let us have a horizontal circular surface with the radius R. An edge of height h is raised
around this circle. A sphere of mass m and radius r rolls along the edge while touching it. The
friction between the sphere and all other surfaces is large enough not to make the sphere slip.
Determine the kinetic energy of the sphere if one revolution in this enclosure takes time T . It
holds that r < h and R > r. You do not need a steering wheel to turn.

We have described the kinematics of the sphere. Let us denote the angular velocity of the center
of gravity’s movement as ω = 2π/T . The center of gravity moves on a circle with a radius R−r;
thus, its velocity is v = ω (R − r).

Now let us switch to a system that moves with velocity v in the direction of motion of the
sphere. Let us draw the axis z perpendicular to the bottom plane, the axis x from the circle’s
center towards the sphere.

Consider rotation along the bottom plane. The sphere is stationary, and the bottom plane
moves with velocity v. Since the sphere is moving without slipping, the velocity of the points
on edge must be also v. Let us denote the angular velocity of rotation along the x axis as ωx,
then the following is true

ωxr = v = ω (R − r) .

Alternatively, let us just consider rotation relative to the edge. The sphere is stationary, and
the edge moves with a velocity ωR. Using the same argument, we get that the angular velocity
of rotation with respect to the z axis is

ωzr = ωR .

Therefore, the magnitude of the angular velocity vector will be
√

ω2
x + ω2

z . Since the sphere
has the same moment of inertia with respect to all its axes, we can express the rotational kinetic
energy as

Ek,r = 1
2J
(
ω2

x + ω2
z

)
= 1

2
2
5mr2ω2

((
R − r

r

)2
+
(

R

r

)2
)

= 1
2

2
5mω2 (2R2 − 2Rr + r2) .

This solves the rotation of the sphere, and we only need to add the kinetic energy of the
translation to it, from which we get

Ek = 1
2mv2 + Ek,r = 2π2m

5T 2

(
9R2 − 14Rr + 7r2) .

Jaroslav Herman
jardah@fykos.org

Problem FE . . . we will prevent armageddon
In August 2022, NASA conducted a test to see if a probe impacting an asteroid could af-
fect its orbit. The chosen object was Dimorphos, a small asteroid orbiting its larger colleague
called Didymos. The probe with a mass of 570 kg shortened Dimorphos’ orbital period around
Didymos by 32 minutes. What’s the maximum change in Didymos’ orbital period if this probe
crashed directly into Didymos? This asteroid orbits the Sun with a semi-major axis 1.64 au and

38

mailto:jardah@fykos.org


Fyziklani 2023 17th year 10th of February 2023

eccentricity 0.384, has a mass of 5.2 · 1011 kg, and the probe would hit the surface with a veloc-
ity of 22 000 km·h−1. The mass of Dimorphos (which was, by the way, discovered at Ondřejov
Observatory here in the Czech Republic) is neglected in this problem. Assume no material was
ejected from Didymos due to the collision. Jarda wants to move something heavy.

We first state Kepler’s third law, from which we get the period of Didymos T as

T = T⊕

√
a3

a3
⊕

,

where T⊕ = 1 year is the period of the Earth, a the lengh of Didymos’ semi-major axis and
a⊕ = 1 au the semi-major axis of the Earth’s orbit. Thus we see that the period is proportional
to the semi-major axis. Since the probe is much lighter than the asteroid, we can assume that
the impact will only slightly change the asteroid’s orbit. We, therefore, differentiate this relation
to obtain the dependence of the change in the period on the change in the semi-major axis of
Didymos’ orbit

∆T = 3
2T⊕

√
a3

a3
⊕

∆a

a
.

As we know, the conservation of energy law applies for motion in a gravitational field. The
total energy of an object (neglecting its mass relative to the central body) per unit of its mass is
E = −GM⊙/(2a), where G is the gravitational constant, M⊙ is in our case the mass of the Sun
and a is the semi-major axis. Thus we see there is a simple relation between energy per unit of
mass and the semi-major axis. We can also calculate this energy as the sum of a potential and
a kinetic energy per unit of mass

E = 1
2v2 − M⊙G

r
.

By comparing these two parts we get

−GM⊙

2a
= 1

2v2 − M⊙G

r
.

This equation has to hold before, as well as after the collision but with different a and v,
because r is not changed by the collision. Therefore, we can express the change in the semi-major
axis using the change in the asteroid’s speed by differentiating this equation

GM⊙

2a2 ∆a = v · ∆v .

To maximize the change in the semi-major axis, we require v and ∆v to point in the same
or the opposite direction.

Let us now consider for a moment the change in Didymos’ velocity ∆v due to the collision.
We can find that using the law of conservation of momentum. This change in velocity will be
the same as in the reference frame of the Sun and the whole planetary system, as well as in the
frame of reference where Didymos is originally at rest. There the following holds

mu = (m + M) ∆v .

Now we can insert into the previous relation
GM⊙

2a2 ∆a = v
mu

M + m
.
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At the right-hand side of the equation, we can neglect m in the denominator relative to M .
The change of the semi-major axis is therefore

∆a = 2muva2

GM⊙M
.

Now we want to maximize v so that ∆a is as large as possible. The asteroid has a maximum
magnitude of velocity when it is closest to the Sun, which occurs at a distance a (1 − e). There,
the magnitude of its velocity is

v =
√

M⊙G

a

( 2
1 − e

− 1
)

.= 35 km·s−1 .

By substituting for all unknown parameters we get

∆T = 3
2T⊕

√
a3

a3
⊕

2mavu

GM⊙M
= 0.086 s .

The orbital period of Didymos around the Sun would change by 0.086 s. For simplicity, we did
not consider the effect of material ejection due to the probe hitting the surface of the body
in the problem statement. However, the fragments produced by the impact would also have
some momentum, which on average would be in the opposite direction to the probe. Thus, the
change in momentum (and, therefore, as a consequence, the orbital period) would be higher.

Jaroslav Herman
jardah@fykos.org

Problem FF . . . two rings
Two rings made out of a thin conductive wire lie on a common axis at a distance of z = 15 cm
from each other. One ring has a radius of a = 5 cm, while the other has a radius of b = 2 mm,
you can therefore consider that b ≪ a. Of course, both rings can act as coils. Determine the
mutual inductance of the rings. Jindra wears two rings on one finger.

The mutual inductance is the same whether the first ring acts on the second one or vice versa.
The magnetic induction on the axis of the bigger ring at a distance of z is

B = µ0I1a2

2(z2 + a2)3/2 ,

where I1 is the current in the bigger ring. Since the second ring has a significantly smaller
radius than the first ring, the magnetic flux through the second ring can be approximated as

Φ12 = Bπb2 = πµ0I1a2b2

2(z2 + a2)3/2 .

The mutual induction of the two coils is then

M = Φ12

I1
= πµ0a2b2

2(z2 + a2)3/2 = 5 · 10−12 H .

Jindřich Jelínek
jjelinek@fykos.org
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Problem FG . . . stone doesn’t fall far from pigeon
A pigeon with a head at height h = 20 cm is eating bread crumbs from the ground. Suddenly,
a rock hits the ground at a distance r from its head, and the pigeon flies away with a velocity v =
= k/r2 away from the rock (the direction is taken from the point of the impact to the pigeon’s
head), where k is a constant. Determine the value of r for the pigeon to fly as far as possible
from its initial position if it exerts no additional force to stay in the air as it moves.

Vojta really doesn’t mind pigeons.
The pigeon’s flight is nothing but an oblique throw. A distance reached by a mass point thrown
at an angle α is given by

d = v2

g
2 sin α cos α

for initial velocity v = k/r2. The sine of the angle α is determined from simple goniometry
as h/r and the cosine as

√
r2 − h2/r. Plugging everything into the equation, we obtain

d = 2k2h

g

√
r2 − h2

r6 = 2k2h

g

√
r2 − h2

r12 .

So, we just need to find the maximum (which, by physics intuition, should exist) of the expres-
sion

D = r2 − h2

r12 .

We set the derivative of the expression equal to zero, resulting in

D′ = 12h2 − 10r2

r13 = 0 ⇒ rmax =
√

30
5 h ,

which gives us that the pigeon flies the farthest when the rock hits at a distance rmax
.= 21.9 cm.

Vojtěch David
vojtech.david@fykos.org

Problem FH . . . love and truth will overcome lies and hatred
Freedom of speech has a speed v = 1.00 m·s−1 and flies through space toward a better society.
However, it hits hard against the immovable wall the local regime has erected against freedom
and elastically reflects. In the opposite direction, however, it travels only the distance l1 = 1.0 m
before it hits a second wall, which is approaching the first wall at speed u = 0.01 m·s−1. The
regime began to repress freedom of speech. Free speech is elastically reflecting from the walls
and trying to break free from this clench. Since the world is supposed to end well, it will break
its prison if it starts to apply an average force F = 10 N to the moving wall. The question,
however, is how long it will take to break out after the first hit. Think of the force F as the
average change in momentum for two successive impacts over the time elapsed between them.
The mass of freedom is m = 1.0 g. Jarda feels under pressure.
Let us denote by ∆pn the change in momentum of the free speech at the nth impact to the
moving wall, and tn the time that elapses between nth and n + 1st impact into the moving
wall. Then according to the problem statement, the average force is

Fn = ∆pn + ∆pn+1

2tn
.
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Now we have to calculate pn and tn.
We solve the whole problem in a system where the speed of freedom was v. After the first

impact into the immutable wall, the freedom of speech moves with the same speed in the
opposite direction. After each reflection from the moving wall, the speed increases by 2u. We
easily justify that by moving to the system where this wall is at rest. Here, the speed of freedom
of speech is v + u, after the elastic reflection is the speed just reversed. This system, however,
was moving at a speed u compared to the original one, so after the reflection is the speed of
freedom of speech in the original system v + 2u. This is true for every reflection on this wall,
therefore the speed after the nth reflection from the moving wall is v + 2nu.

We calculate the time elapsed between two reflections on this moving wall. We denote the
distance between walls after the nth reflection by ln (we know the distance l1 after the first
impact from the problem statement). For the n + 1st reflection the following condition must
hold

(v + 2nu) tn + u tn = 2ln ⇒ tn = 2ln

v + (2n + 1) u
,

which determines when the next reflection occurs.
We see that tn depends on ln, so we have to find it. Between the nth and the following

reflection the distance between the two walls decreases by utn, so

ln+1 = ln − u tn = ln
v + (2n − 1) u

v + (2n + 1) u
.

Let us write this expression also for ln as

ln = ln−1
v + (2n − 3) u

v + (2n − 1) u

and let us insert it into the equation above. We get

ln+1 = ln−1
v + (2n − 3) u

v + (2n − 1) u

v + (2n − 1) u

v + (2n + 1) u
= ln−1

v + (2n − 3) u

v + (2n + 1) u
.

Several elements have been eliminated. We can iterate this procedure and we get

ln = l1
v + u

v + (2n − 1) u
.

Now we know how tn depends on n. Let us now express ∆pn as

∆pn = m (v + 2nu − (−v − 2 (n − 1) u)) = m (2v + 2u (2n − 1)) .

Then we get the final relation for the force Fn as

Fn = 2m
v + 2nu

tn
= m

(v + (2n − 1) u) (v + 2nu) (v + (2n + 1) u)
l1 (u + v) .

Now we check the values given to us. For small n we can neglect the elements with u
compared to v and we get a force on the order of 10−3 N. Presumably then, the n needs to
be very large for the freedom of speech to exert such a large average force. But then we can
put 2n − 1 ≈ 2n + 1 ≈ 2n and express

Fn
.= m

(v + 2nu)3

l1 (u + v) ⇒ n
.=

3
√

F l1(u+v)
m

− v

2u
= 1 031 .
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If we insert n = 1 030, we get F1 030
.= 9.98 N, for n = 1 031 it is already F1 031

.= 10.01 N.
Therefore, there must be n = 1 031 reflections on the moving wall.

The time we are looking for is then obtained from the knowledge of ln and the motion of
the wall as

t = l1 − l1031

u
+ l1

v
= l1

u

2 (1 031 − 1) u

v + (2 · 1 031 − 1) u
+ l1

v

.= 96 s .

Note also that for nu ≫ v is ml′v′ = ml1v, where v′ = 2nu and l′ is the distance of the walls
at the speed of freedom of speech v′. Thus, the law of conservation of some kind of angular
momentum holds.

Jaroslav Herman
jardah@fykos.org

Problem GA . . . running princess
The princess was walking around the castle when she suddenly noticed a spider crawling up her
veil at u = 1.00 m·s−1 towards her. She screamed terribly (which of course didn’t help her at
all) and started running away at v = 3.00 m·s−1 (which also didn’t help her at all, as she was
dragging the veil behind her. . . ). She ran through the door like that, which slammed shut just
behind the spider. At that point, l0 = 3.00 m of the veil remained between the spider and the
princess.

Both the princess and the spider continued to move, and the slammed veil began to stretch
perfectly. The princess thought she could escape the spider because she was running faster
than it, but she was wrong. In what time tf will the spider catch up with the princess? Think
of the spider as a point. Legolas likes spiders.

With this problem, the hardest part is finding a way to approach it mathematically. In my
opinion, the most efficient way is to introduce the quantity p, which we will use to denote the
ratio of the section of the veil that the spider has already passed and the current length of the
veil, where we denote the current length of the veil l and l = l0 + vt will hold, where t is the
time since the door was slammed.

In the beginning, p = 0. The spider catches up with the princess when p = 1.
This approach is advantageous because p is not directly affected by the princess’s running

since the veil extends the same along its entire length, and thus if the spider had remained
stationary, p would not have changed at all.

However, when the spider moves, it travels a distance u dt in a small instant dt. So in this
instant p increases by an element dp = u dt/l.

We get a differential equation
dp = u dt

l0 + vt
,
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which is already in the form of separated variables, i.e., we only need to integrate and express tf∫ 1

0
dp = u

v

∫ tf

0

dt

l0/v + t
,

[p]10 = u

v

[
ln
(

l0

v
+ t
)]tf

0
= u

v

(
ln
(

l0

v
+ tf

)
− ln

(
l0

v

))
,

v

u
= ln

(
1 + tfv

l0

)
,

e
v
u = 1 + tfv

l0
,(

e
v
u − 1

) l0

v
= tf .

We can observe that for v approaching 0 in the limit, we can write ev/u = 1 + v/u, and then
we get tf = l0/u. Substituting the values from the problem statement, we get tf = 19.1 s.

Šimon Pajger
legolas@fykos.org

Problem GB . . . stone is falling among pigeons
Three pigeons of height h = 20 cm are standing at the vertices of an
equilateral triangle with side length a = 50 cm and eating bread crumbs.
Suddenly, a stone falls among them on one of the triangle’s medians such
that the point of impact divides the median in the ratio 2 : 1, and it
is not the triangle’s centroid. All the pigeons fly away with an initial
velocity v = k/r2 away from the stone (the direction is taken from the
point of impact to the bird’s head), where k is a constant and r is
the initial distance of the bird’s head from the point of impact. At this
point, however, group behavior kicks in for the pigeons. At each moment,
each bird instinctively averages the velocity vectors of its two fellow pigeons and chooses an
acceleration such that after a period T = 3 s of uniformly accelerated motion, it moves at that
average velocity. After some time, the movement of the feathered friends becomes steady, and
they all fly in the same direction at the same speed. Determine the angle that this direction
forms with the ground. Vojta wonders how a pigeon works.

Let us denote the velocities of the pigeons v1, v2 and v3 and their accelerations correspondingly.
The heuristic that the pigeons follow can be mathematically rewritten as

v1 + a1T = 1
2 (v2 + v3) ,

v2 + a2T = 1
2 (v1 + v3) ,

v3 + a3T = 1
2 (v1 + v2) .

If we add these three equations, we get an interesting equation

(a1 + a2 + a3) T = 0 .
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This tells us that the total instantaneous acceleration of the system of three pigeons is zero.
This means that the whole system is either at rest or moving in a uniform linear motion – that
is, the sum of the velocities of the three birds is constant throughout the motion. This means
that the total velocity of the flock of pigeons after the direction is steady is determined as the
average of the velocity vectors at the beginning of the movement, i.e.,

V = 1
3 (v1(0) + v2(0) + v3(0)) ,

Now we only need to solve the initial conditions. Let’s introduce a Cartesian coordinate
system with the origin at the center of the triangle, the z-axis perpendicular to the ground,
and the first pigeon standing on the x-axis. The positions of the heads of the pigeons hi and
the position of the stone s can then be determined from simple geometry as

h1 =
[√

3
3 a, 0, h

]
,

h2 =
[

−
√

3
6 a,

1
2a, h

]
,

h3 =
[

−
√

3
6 a, −1

2a, h

]
,

s =
[√

3
6 a, 0, 0

]
,

from which we can easily determine the directions and magnitudes of the velocities vi at time
zero as

v1(0) = k

||h1 − s||3
(h1 − s) .= k ·

(9.620
0.000
13.33

)
m−2 ,

v2(0) = k

||h2 − s||3
(h2 − s) .= k ·

(−3.604
3.121
2.497

)
m−2 ,

v3(0) = k

||h3 − s||3
(h3 − s) .= k ·

(−3.604
−3.121
2.497

)
m−2 .

The sought vector is, therefore, equal to

v = k′

(2.413
0.000
18.32

)
,

where k′ is a certain constant. Now we need to determine the angle that this vector makes with
the ground, which we do simply by using goniometry because

tan φ = vz

vx

.= 18.32
2.413

.= 7.59 .
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From this, we determine the angle φ
.= 82.5◦.

Note that the entire situation can also be resolved in an exact way, which implies, among
other things, the validity of the assumption that the speed of the feathered friends will stabilize.
One of the methods to resolve this situation is given below.

The original triple of equations of motion can also be rewritten in matrix form, but we must
remember that all the elements are vectors themselves.(a1

a2
a3

)
=

(v1
v2
v3

)′

= 1
2T

(−2 1 1
1 −2 1
1 1 −2

)(v1
v2
v3

)
At this point, our goal is to solve a system of linear differential equations. For this purpose, we
need to diagonalize the matrix shown above. This matrix has eigenvalues 0, −3 and −3, which
are associated with eigenvectors

M0 = span

{(1
1
1

)}
, M−3 = span

{(−1
0
1

)
,

(−1
1
0

)}
.

So we can rewrite our set in the form(v1
v2
v3

)′

= 1
2T

(1 −1 −1
1 0 1
1 1 0

)(0 0 0
0 −3 0
0 0 −3

)(1 −1 −1
1 0 1
1 1 0

)−1(v1
v2
v3

)
.

Now, if we introduce substitution(u1
u2
u3

)
=

(1 −1 −1
1 0 1
1 1 0

)−1(v1
v2
v3

)
,

we can further simplify our set of equations to(u1
u2
u3

)′

= 1
2T

(0 0 0
0 −3 0
0 0 −3

)(u1
u2
u3

)
,

which are already three simple separable differential equations that we can solve. We can directly
write (u1

u2
u3

)
=

 c1

c2e− 3
2T

t

c3e− −3
2T

t

 ,

from where, by reverse substitution(v1
v2
v3

)
=

c1 − (c2 + c3) e− 3
2T

t

c1 + c2e− 3
2T

t

c1 + c3e− 3
2T

t

 , (1)
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where the vectors c1, c2, and c3 are vector integration constants that we determine from the
initial conditions. Before we find these initial conditions, note that after a sufficiently long time,
all components that do not depend on c1 disappear, since

lim
t→∞

(v1
v2
v3

)
=

(c1
c1
c1

)
,

which indeed corresponds to the assumption that pigeons “converge” to the same velocity, and
we can consider our intuition correct. So we only need to find the vector c1. At time t = 0 s,
from equation (1), the following holds

c1 = 1
3 (v1(0) + v2(0) + v3(0)) ,

thus obtaining purely mathematically the same result as using the physical intuition above.

Vojtěch David
vojtech.david@fykos.org

Problem GC . . . crashed charges
Two small particles, each of mass m = 0.1 g, are at rest in a vacuum at a distance L = 1.0 m
apart. One of them has charge Q = 0.1 μC, the other the same charge of the opposite sign.
How long will it take for them to reach each other? You can neglect the loss of energy due to
bremsstrahlung. Robo wanted to annihilate everything, but all he got was a collision.

First of all, we need to realize that the sizes of the particles are much smaller than their mutual
distances; thus, we can say that they will reach each other when their distance equals 0. The
two particles are the same, which means they will move with the same acceleration, which
implies that each particle must travel a distance L/2. Using Kepler’s third law, we can find
the time it takes the particles to travel the distance L/2 to the system’s center of gravity. The
law describes that if two bodies orbit around the same point of mass on conic sections (ellipse,
circle, ...) with semi-major and semi-minor axis a1, a2 and their orbital periods T1, T2, then
the following is true (

T1

T2

)2
=
(

a1

a2

)3
.

The two particles will travel in straight lines to their mutual center of mass, which is L/2 far
from each. The line segment is actually an ellipse with minor semi-axes equal to 0, with its
focuses at the ends of the ellipse, and the major semi-axes have a length L/4. Half the orbital
period along such an ellipse (segment) equals the time it takes a body to travel from one end
of the segment to the other. From Kepler’s third law, we know that its orbital period must
be equal to the orbit of particles moving along a circle with a radius L/4 with the center at
a mutual center of gravity. Therefore, we only need to calculate half of its orbital period along
this circle. From the equilibrium of the electric and centrifugal forces, we will get

mv2
0

L/4 = Q2

4πε0(2 · L/4)2 .
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For the orbital period along the circle, the following holds

T = 2πL/4
v0

,

from which we get

T 2 =
(

2πL/4
v0

)2

= ε0m (πL)3

Q2 .

Halving it gives us

t = T

2 =
√

ε0m (πL)3

2Q
.

What numerically equals t = 0.83 s.

Róbert Jurčo
robert.jurco@fykos.org
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